Estimation of cumulative exposure to manganese using the exposure database MEGA and occupational histories of male participants of the Heinz Nixdorf Recall Study

Kendzia B^a, Pesch B^a, Casjens S^a, Weiss T^a, Behrens T^a, Arendt M^b, Marr A^b, Van Gelder R^c, Dragano N^d, Jöckel KH^b, Brüning T^a

Objective

- In 2015, the German Occupational Exposure Limit (OEL) for inhalable manganese (Mn) was reduced to 200 μg/m³ due to reports of neurotoxic effects in the low-dose range
- Here we took advantage of a large dataset of personal measurements compiled in the exposure database MEGA and estimated average exposure concentrations for at-risk occupations
- These means were used to calculate cumulative exposure to Mn of men investigated within the framework of the Heinz Nixdorf Recall Study (HNRS)

Methods

- 4,635 personal measurements of inhalable Mn measurements collected between 1989 to 2015 (MEGA)
 - Measurements below the limit of quantification (LOQ) were multiply imputed according to their distribution above LOQ (Figure 2)
 - Mixed-effects models were applied to the log-transformed Mn concentrations to calculate the annual geometric means (GMs) of shift exposure in at-risk occupations
- II Working as welder or in other at-risk occupations (supplemental questionnaire) of 354 male participants of HNRS
- III Linking annual GMs with the occupational histories to calculate cumulative exposure to Mn (Figure 1)

 \sum GM [µg/m³] × Duration [years] × Intensity score

Intensity score: working as regular welder (1), frequent welding (0.25), occasional welding (0.1)

Results

- Exposure to Mn was strongly influenced by the major technique and the Mn content of the electrode/processed material (Table 1)
- GMs > 200 μg/m³ (OEL) were observed in gas welding and gas metal arc welding with consumable materials of Mn content > 5%
- Median cumulative exposure to Mn: 58 [µg/m³ x years] in all men working in at-risk occupations and 1,121 [µg/m³ x years] in 26 welders

Institute for Prevention and Occupational Medicine of the German Social Accident Insurance Institute of the Ruhr-Universität Bochum

Institute for Occupational Safety and Health of the German Social Accident Insurance

Figure 2 Density function of the concentrations of inhalable manganese among welders

Technique	Material	N	GM [µg/m³]	95% CI [µg/m³]
GMAW	Mild steel	1418	95	87 – 105
	Stainless steel	342	54	47 – 62
	Mn content >5%	47	201	138 – 291
TIG	Mild steel	60	10	8 – 12
	Stainless steel	332	6	5 – 7
	Mn content >5%	10	21	14 – 31
SMAW	Mild steel	85	40	32 – 51
	Stainless steel	84	23	18 – 29
	Mn content >5%	22	84	56 – 127

Conclusion

Supplemental questionnnaires in addition to the job title are necessary to collect information on major predictors of the exposure level to Mn (e.g. welding technique) in community-based studies like HNRS when estimating neurotoxic effects of occupational exposure to Mn.

GMAW: Gas metal arc welding, TIG: Tungsten inert gas welding, SMAW: Shielded metal arc welding

Table 1 Model-based estimates of average shift exposure to inhalable Mnfor major welding techniques and material predicted for the year 2009(MEGA database, 1989-2015)

^a Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Germany

^b Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Germany

^c Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany

^d Institute of Medical Sociology, Medical Faculty, University of Düsseldorf, Germany

Contact: kendzia@ipa-dguv.de