On the challenges of measuring semi-volatile organic compound aerosols using personal samplers

G. C. Dragan, V. Kohlmeier, D. Breuer, M. Blaskowitz, E. Karg, R. Zimmermann

Abstract Aerosols from Semi-Volatile Organic Compounds (SVOCs) are usually partitioned in workplace air between the particulate and vapour phases. Personal samplers that are used for the occupational monitoring of such aerosols should be able to trap both phases. In this study the dynamic changes in the partitioning of model SVOC aerosols are shown from an experimental point of view. Furthermore, the partitioning between filter and adsorber substrates of a personal sampler were compared for both aerosol sampling and spiking technique. In every comparison the spiking technique had more SVOC left on the filter substrate than by aerosol sampling. The difference between methods ranged from 13 to 52%. Based on these results, further measurements were undertaken to study the differences in evaporation rates of filters clogged with SVOC aerosol particles and that of spiked filters.

Herausforderungen bei der Messung semi-volatile organischer Substanzen mittels personengetragener Aerosolsammler

1 Introduction

Aerosols from Semi-Volatile Organic Compounds (SVOCs) represent an important challenge to industrial hygienists due to toxicological as well as sampling issues [1]. SVOCs are often partitioned between the particulate and vapour phases of an aerosol. Their presence in workplace air is most commonly monitored using personal samplers equipped with fibrous filters. However, collected particulate mass can evaporate from the filters [2] or vapour can condense onto collected particles or on the filter. Due to these evaporation-condensation effects, the personal aerosol samplers currently used do not reflect the particle-vapour-distribution of SVOC aerosols accurately. If a sampler fails to collect both phases of an aerosol, a significant underestimation of airborne pollutants could be the consequence.

Since sampling artefacts could lead to a biased health risk assessment, separate particle-vapour quantification can be important. The separate analysis of both phases should be considered because inhaled SVOC aerosol particles and vapours behave differently when inhaled in the respiratory tract. Vapours for example can be exhaled if they are not soluble in body fluids. If this is not the case, vapours are adsorbed into the lung tissue. Furthermore, the deposition of particles in the respiratory tract depends on the particle aerodynamic size [3; 4], with smaller particles reaching deeper into the lung.

One possibility to account for the vapour-particle partitioning of SVOC aerosols is to use a denuder as a vapour trapping tool. Because of their different diffusion coefficients, particles will flow through the denuder channels, while vapour molecules will diffuse to the denuder wall where they should be ab- or adsorbed [5]. Small and portable denuders like the multi-channel silicone rubber traps are very suitable for both the vapour collection of nonpolar SVOCs and the transmission of particles in the 0.5 to 2 μm size range [6; 7]. Therefore, artefact-free separation of both SVOC phases may be possible if using low flow rate personal air samplers combined with multi-channel silicone rubber traps.

For the development of personal samplers and methods for the analysis of SVOC aerosols, many laboratories resort to “filter spiking” experiments [8], where known amounts of compounds of interest are placed on filters as a way to simulate the sampling and partitioning of workplace aerosols. Downstream of the filters, adsorbors can be attached to account for the mass evaporated from filters. Air is sampled using a personal sampling pump and the filter and sorbent can be thermally desorbed or extracted with a solvent and analysed. Based on the subsequent results, the spiking method provides an indication if the tested SVOCs should be sampled as particulate phase on filters, as vapour phase on adsorbors or mixed-phase aerosol on combined filter-adsorber personal samplers.

2 Materials and Methods

2.1 Generation and characterisation of SVOC aerosols

Aerosols from several SVOCs (diethylene glycol, n-tetradecane, n-hexadecane, n-octadecane) with various particle sizes were generated using a Topas SLG 270 (Topas GmbH, Germany) aerosol generator and mixed with nitrogen in a Flow Tube (FT) inside a temperature controlled environmental chamber (HPZ 90/50, Heraeus Vötsch, Germany;
Figure 1-A). The chamber was operated for the purpose of this study at temperatures ranging from 10 to 35 °C.

The particle-vapour partitioning of the generated SVOC aerosols in the FT was assessed using an on-line reference [9; 10] comprised of a Welas 3000 optical particle sizer (OPC, Palas GmbH, Germany) for the determination of the particle mass and a JUM 109A flame ionisation detector (FID, JUM Engineering GmbH, Germany) for measuring the total SVOC concentration. The OPC comprised two separate sensors placed in the upper and lower part of the FT, separated by about three seconds of residence time (Figure 1). By alternately measuring with both sensors, the changes in the particle size distribution (PSD) and therefore in particle mass could be monitored within the residence time between the sensors. Interested readers can find more details about this setup in the following referenced paper [9].

Off-line samplers like GGP and GGP-mini (Figure 1-B) [11 to 13] were used to determine the particle-vapour partitioning of SVOC aerosols as measured by filter-adsorber type personal aerosol samplers. Parallel measurements using on-line and off-line methods were conducted to investigate and predict the sampling bias regarding the particle-vapour partitioning caused by off-line samplers.

2.2 Filter spiking
Glass fibre filters with a diameter of 37 mm (MN 85/90, Macherey-Nagel) were spiked with known quantities of SVOCs by means of a microliter syringe. Three SVOCs of different volatility were tested with regard to their partitioning between filter and adsorber substrates after simulating two hours of sampling. Air was drawn through the filter-adsorber combination at a flow rate of 5.5 l/min for two hours. Subsequent analysis of the filters and adsorbers by solvent extraction allowed comparing the partitioning of the spiking technique with that of aerosol sampling (Table).

2.3 Monitoring of the mass evaporated from clogged filters
A FID was set up downstream of a filter holder containing 37 mm filters. The FID measured the evaporation flux of SVOCs during particle collection and during the subsequent evaporation of collected particles or spiked filters (Figure 2). A sampling pump was used to reach the target flowrate of 5.5 l/min.

3 Results and discussion
3.1 Dynamic partitioning of model SVOC aerosols in ambient air
Aerosols of SVOC will usually be partitioned between the gas and particle phase. The particle-vapour partitioning of an aerosol can fluctuate strongly with changing temperature and residence time. Figure 3 shows the mass percentage of particles (the difference up to 100 % represented by the vapour phase) from an 18 mg/m³ generated n-hexadecane aerosol inside the flow tube. The particle mass was measured at two locations in the FT separated by three seconds of residence time (Figure 5, left axis). The aerosol distribution at 11 °C was dominated by the condensed phase, with up to 90% particle fraction. In contrast, at 55 °C only 20% of the aerosol could be found in the particle phase. The particle mass evaporated between the two sampling points also varies with temperature, with about 2 mg/m³ evaporated particle mass at 15 °C, 5 mg/m³ at 25 °C and 7 mg/m³ at 50 °C. This goes to show that the partitioning of SVOC aerosols is continuously changing with temperature and distance from the emission source. Furthermore, the separate quantification of the gaseous and particulate phases might be required for compounds with a degree of toxicity that is strongly depending on the physical state of the aerosol.
The relative humidity of the ambient air can also play a major role on the partitioning of water-soluble SVOCs and on the time required for such droplets to evaporate. Figure 4 shows the PSD of diethylene glycol (DEG) particles with an initial diameter of 1 µm and the PSD of these particles after three seconds of residence time at 70, 40 and 0% of relative humidity (RH). Figure 4 shows that at 0% RH DEG particles evaporated completely. By contrast, at higher RH values, higher water content is being sorbed by the DEG particles, leading to a homogeneous mixture and therefore decreasing the vapour pressure on the droplet-air interface. As a result, water-soluble particles will remain in the air for longer time periods.

3.2 Assessment of the partitioning between the filter and adsorber substrates for the spiking technique in comparison to aerosol sampling

Filter spiking followed by drawing of air with a sampling pump is widely used in laboratories that develop samplers and methods for SVOC sampling. However, this technique might not be fully comparable to sampling of particle-vapour mixtures. The Table shows the partitioning obtained for both aerosol sampling and spiking measurements. For each of the six comparisons, the amount of material remaining on the filters was higher for the spiking tests. Conversely, more SVOC was transferred in the sorbent tube by the passing air in the case of aerosol sampling. The differences between the two techniques ranged from 15 to 52%. Neither the volatility of the substances tested nor the concentrations affected the differences observed. This goes to show that even though the results obtained with spiking technique provide a good estimation if a compound should be sampled using filters (particles), sorbent tubes (vapours) or a combination of both (mixed phase), differences to actual aerosol sampling will arise. This should be kept in mind, especially when compounds tested are almost entirely found on the filters. Though the spiking test might recommend the sampling of the compound only with filter cassettes, finer aerosol particles might lead to evaporative losses that should be accounted for.

3.3 Assessment of the evaporative flux behind filters clogged with particles or spiked

Figure 5 shows the time-dependent variation of the DEG mass measured behind a filter during collection of DEG aerosol particles (black dots) and evaporation of the sampled DEG droplets (grey dots). During the initial phase of sampling, the vapour concentration passing the filter is low and increases rapidly until it stabilises at about 90% of the final concentration. At first, the fibrous filter will adsorb vapour and will act like a source of vapour once a sufficient amount of particles are trapped. At this point, the vapour concentration exiting the filter reaches a plateau. After turning off the aerosol generator, only pure nitrogen was aspirated through the filter. Despite the fact that no further DEG was found upstream of the filter, the vapour concentration behind it remained constant. This goes to show that the collected particles evaporate and saturate the aspirated air flow with vapours. The main parameter limiting the evaporation of SVOC from the filter is the ability of
the sampled air to transport the vapours. The maximum amount of material being transported is given by the gas phase saturation concentration, which is a function of a compound's vapour pressure at the given temperature.

The vapour concentration downstream of DEG-spiked filters was measured at two flow rates and compared to that from the particle-clogged filter. By comparing the evaporation flux between particle-clogged and spiked filters, a difference of more than factor two is visible (Figure 6). With the spiking technique, larger and more compact droplets will be placed on the filters. This in turn leads to a lower surface to volume ratio compared to the sampling of aerosol particles. This reduced surface will lead to substantially less evaporation through diffusion of material into the air stream passing the filter. By increasing the flow rate through the filter, the relative residence time of the aspirated air and therefore the contact time with the diffusing vapour decreases. This is reflected in Figure 6, where an almost 60% increase in the evaporation flux was measured when reducing the flow rate from 3.5 to 0.5 l/min. This goes to show that lower flow rates through the filter will lead to an increased enrichment of the aspirated air with vapour.

4 Conclusions and outlook

The results presented in this study furthermore demonstrate the dynamic partition of SVOC aerosols between the particle and vapour phases. This dynamic partitioning should be accounted for in cases where different toxicological effects are expected for each phase. Improved personal samplers will be needed to achieve this goal [14]. Furthermore, it was shown that the spiking technique used for method development and prediction of partitioning underestimate evaporation from filters compared with actual aerosol sampling. Alternative ways to micro-dose smaller droplets on filters [15] in a defined pattern might lead to results that are closer to actual aerosol sampling.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Method</th>
<th>Filter in mg/m³</th>
<th>in %</th>
<th>Adsorber in mg/m³</th>
<th>in %</th>
<th>Total in mg/m³</th>
<th>Difference in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Octadecane</td>
<td>Spiking</td>
<td>2.6</td>
<td>82.3</td>
<td>0.6</td>
<td>17.7</td>
<td>3.2</td>
<td>29.1</td>
</tr>
<tr>
<td>Aerosol</td>
<td>1.7</td>
<td>53.1</td>
<td>1.5</td>
<td>46.9</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Hexadecane Spiking</td>
<td>5.2</td>
<td>75.1</td>
<td>1.7</td>
<td>24.9</td>
<td>6.9</td>
<td>52.0</td>
<td></td>
</tr>
<tr>
<td>Aerosol</td>
<td>1.9</td>
<td>23.2</td>
<td>6.3</td>
<td>76.8</td>
<td>8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Hexadecane Spiking</td>
<td>20.9</td>
<td>84.8</td>
<td>3.7</td>
<td>15.2</td>
<td>24.6</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>Aerosol</td>
<td>12.3</td>
<td>43.5</td>
<td>16</td>
<td>56.5</td>
<td>28.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Tetradecane Spiking</td>
<td>12.6</td>
<td>19.0</td>
<td>53.6</td>
<td>81.0</td>
<td>66.2</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>Aerosol</td>
<td>0</td>
<td>0.0</td>
<td>71.7</td>
<td>100</td>
<td>71.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Tetradecane Spiking</td>
<td>45.0</td>
<td>34.3</td>
<td>86.0</td>
<td>65.7</td>
<td>131.0</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>Aerosol</td>
<td>13.2</td>
<td>8.6</td>
<td>139.5</td>
<td>91.4</td>
<td>152.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Tetradecane Spiking</td>
<td>71.0</td>
<td>41.3</td>
<td>101.0</td>
<td>58.7</td>
<td>172.0</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>Aerosol</td>
<td>56.8</td>
<td>28.0</td>
<td>146.4</td>
<td>72.0</td>
<td>203.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

