

Workshop: Measurement Uncertainty for Measurement Methods of Air Monitoring

AIRMON 10, Bristol/UK Dr. Jörg Rissler – joerg.rissler@dguv.de Jana Dospil – jana.dospil@dguv.de Dr. Cornelia Wippich – cornelia.wippich@dguv.de 8th November 2022

Agenda

- Introduction
 - What is Measurement Uncertainty?
 - Terms
- Regulatory Basis
- Validation Steps
- Calculate the Uncertainty
 - Mathematical Model
 - Build the Mass Concentration Model
 - Standard Deviations
 - Derive Standard Deviations
- Implementation into the App

Introduction

What is measurement uncertainty?

The true value is principally unknown. The measured value is always an estimate depending on different influences. The uncertainty is a parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand.

Why do we need the measurement uncertainty?

- Customer request
- Regulation requirement (comparison with limit values)
- Comparison with other laboratories, improvement of measurement process

Introduction

Expanded measurement uncertainty:

Coverage factor k	Probability
1	68.3 %
1.96	95 %
2	95.45 %
2.6	99 %
3	99.7 %

→ means: one can attribute a certain probability to the expanded uncertainty range.

 \rightarrow does NOT mean: there is a certain chance that the true value lies within the range of the measurement uncertainty

- ISO 20581: k = 2 → approximately 95 % but rounded to a whole number
- In our calculation we use k = 1.96

App for the Calculation of the Measurement Uncertainty

IFA Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung	Deutsch English Language	Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung		Deuts	ch E Language
mentals Input-Calculate-Save Recovery Ca	bration Model	Fundamentals Input-Calculate-Save Recovery	Calibration Model		
		Data provision	Influence	Uncert. SensCoeff	. rel. Contr
asic Information	Information on the procedure	Get data Show Error Messages	Recovery (rand)	1.3e-01 9.6e-01	2.3
Eventing Units 154, Oction 2.2			Recovery (sys)	4.3e-02 1.0e+00	0.3
Executing Onit IFA, Section 2.2	Process Extraction V	Recovery OK	Calibration	2.6e-01 9.6e-01	9.1
Executing Person Dospil		Colibration	Humidity	8.0e-02 9.6e-01	0.9
	Analyte n-heptane	Calibration	Ambient conditions	5.7e-05 -4.9e+03	11.6
		Accept Model	Volume internal standard	1.4e-06 4.8e+03	0.0
Validation date July 2020			Drift of analytical devices	5.8e-01 9.6e-01	46.5
Application Dynamic test g		Validated concentration	Repetition (pump)	8.8e-07 -1.5e+05	2.5
Synamic test g		Applete (melli)	Calibration (pump)	2.0e-06 -1.5e+05	12.6
andard Operating Procedure		Analyte [mg/L]	Stability (pump)	1.9e-06 -1.5e+05	11.6
		Measured value dimensio 14.75	Sampling duration	4.1e-01 -3.2e-01	2.6
		Flow rate [I /min] 0.066	Dispenser extraction vo	1.0e-06 4.8e+03	0.0
article-Vapours / Gases-Vapours / Thermodesorption	Metals_ICP-MS		Dispenser extraction vo	3.8e-06 4.8e+03	0.1
Humidity Temperature		Sampling duration [min] 30		· ·	
		Digestion volume [mL]			
Particle No 💌	Fraction R 💌				
Standard internal 💌	Digestion Open V	Calculate Save			
		Result			
Extraction Volume [mL] 2	Dilution 10 V				
		beta [mg/m³] 9.61e+00			
		u_c 8.13e-01			
		U [mg/m²] 1.59e+00			
		11 (9/1)			
		0 [70] 10.59			

Introduction

Uncertainty:

- Part of the norm, determined through experiments
- Imperfection of handling and devices
- Cannot be avoided
- Part of the determination of measurement uncertainty

Error:

- Not part of the norm, lead back to misconduct of handling or device
- Are avoidable
- Need to be minimized or eliminated beforehand

Introduction

Systematic deviation

- This is a known deviation that stays always the same (e.g. instrument offset).
- It can be corrected for, often by including a correction constant.

Random deviation

- This influence can only be described by a random variable.
- <u>**However**</u>, one has often the situation, that there is a offset for the used instruments, but the instruments are used randomly.
- → If the resulting influence is small, one may treat this as a random variable, although it is in principle a systematic deviation.

Example: Extraction volume

Calibration protocol

Regulatory basis

I		\square
L	_	
T		_
L	_	=
Т	-	_

ISO 20581: 2016 Workplace air – General requirements for the performance of procedures for the measurement of chemical agents

	${\mathbb Z}$
_	_
_	=
	=

ISO 22065: 2019 Workplace air – Gases and vapours – Requirements for evaluation of measuring procedures using pumped samplers

ISO 21832: 2018 Workplace air – Metals and metalloids in airborne particles – Requirements for evaluation of measuring procedures

ISO 23861:2020 Workplace air – Chemical agent present as a mixture of airborne particles and vapour – Requirements for evaluation of measuring procedures (draft)

I	
1	_
1	
1	
I	
1	

DIN 32645: 2008 Chemical analysis – Decision limit, detection limit and determination limit under repeatability conditions – Terms, methods, evaluation

Validation Steps

Experiments	Part of MU
Sampling	\checkmark
Transport	➤ - gases(✓) - metals
Storage (without loss)	×
Sample preparation	\checkmark
Calibration	\checkmark
Limit of quantification	×
Recovery	\checkmark
Influence of temperature/humidity (not for metals)	\checkmark

Calculate the uncertainty

The formula

The GUM

- ISO/IEC Guide 98-1:2009 Uncertainty of measurement Part 1: Introduction to the expression of uncertainty in measurement (Guide to the expression of uncertainty in measurement GUM)
- Influences $\{X_i\}$ affect a measurable quantity $Y = f(\{X_i\})$. The GUM allows to communicate the available information on X_i in a transparent, quantitative way.
- Due to the influences, results vary with a variance σ_c^2 around the measured value y (asymptotically normal distributed). g(Y)

The formula

 $\sigma_{\rm c} =$

The formula

Sensitivity coefficients c_i

- Determine from $Y = f({X_i}) \Rightarrow c_i = \left(\frac{\delta f}{\delta X_i}\right)_{\chi}$
- They account for units.
- They weight the influences:
 The larger the exponent of X_i in f, the more important is X_i.

We need the function *f* (mathematical model)

Assumptions/Requirements:

- Normal distribution ($U = 1.96\sigma_c$)
- small effect on Y
- uncorrelated $\{X_i\}$

Standard deviation σ_i

- Derive from information on $\{X_i\}$
- Standard uncertainties u_i are always interpreted as standard deviations σ_i .

Mathematical model

Know and assume Example: mass concentration (extraction)

How does one get $Y = f({X_i})$?

- 1. The function $Y = f({X_i})$ (mathematical model) is known.
- 2. One can **assume** a functional dependence: $Y = y + \sum_{i} X_{i}$
 - X_i can be any influence that has to be described.
 - X_i is a random variable with expected value $E[X_i] = 0$ and variance $V[X_i] = \sigma_i^2$ (standard deviation σ_i).
 - Exponent of X_i is $1 \rightarrow$ sensitivity coefficients $c_i = 1$

1. Known model for the mass concentration

• What is known for the mass concentration B? - Generic mathematical model

Sample Preparation

©eSZt - Michael Siggi Siegmund

Workshop: Measurement uncertainty; Rissler, Dospil, Wippich; AIRMON 2022 Example: Extraction

- Sampler is opened and transferred into a vial
- Solvent is added
- If needed: internal standard is added
- After a certain extraction time, the extract is filtered and then added into an autosampler vial

Uncertainties: all volumetric instruments

1. Known model for the mass concentration

• What is known for the mass concentration B? - Generic mathematical model

• Volume flow Q is corrected for ambient conditions. Ideal gas: $V_{air}(p_1, \tau_1) \rightarrow V_{air}(p_0, \tau_0)$

How does one get $Y = f({X_i})$?

1. The function $Y = f({X_i})$ (mathematical model) is known.

$$B = \frac{V_{\rm ex}C}{TQ}$$

2. One can **assume** a functional dependence $Y = y + \sum_i X_i$, e. g., for the **volume flow**:

uncertainty influences mentioned in ISO 22065 and ISO 21832

Workshop: Measurement uncertainty; Rissler, Dospil, Wippich; AIRMON 2022

Sensitivity coefficients for *Q*

• The $\{X_{q,i}\}$ are variables. The (corrected) measured values v_{ex} , c, t, q are constants.

• With
$$B = \frac{V_{\text{ex}}C}{T(q+X_{q,\text{cal}}+X_{q,\text{rep}}+X_{q,\text{stab}})} = \frac{V_{\text{ex}}C}{T} \left[\frac{1}{(q+X_{q,\text{cal}}+X_{q,\text{rep}}+X_{q,\text{stab}})} \right]$$
, one gets:

$$c_{\mathbf{q},i} = \left(\frac{\delta B}{\delta X_{\mathbf{q},i}}\right)_{x_i} = -\beta \frac{1}{q}$$

- All $\{X_{q,i}\}$ have the same $c_{q,i}$, since the inner derivative is always 1.
- ()_{*x*_{*i*} means to take expected/measured value: $\{V_{ex}; C; T; X_{q,i}\} \rightarrow \{v_{ex}; c; t; 0\}$}

Proceed in the same way for the other quantities

Build the mass concentration model

Example: Extraction

Sampling duration, ambient conditions, extraction volume

$$B = \frac{(v_{\text{ex}}' + e_{\text{s}} + X_{\text{ex}})}{(t + X_t)(q + X_{\text{q,cal}} + X_{\text{q,rep}} + X_{\text{q,stab}}) + X_{\text{air}}}C$$

- ISO 22065 suggests only one term X_t that is large enough to comprise several influences (calibration of watch, starting/ending delay ...).
- Take one influence X_{air} for the volume $V_{air} = TQ$ (pressure, temperature measurement equipment, fluctuations during sampling ...).
- Influence of the volumetric instrument X_{ex} .
- Constants:
 - Measured values t, q, v'_{ex}
 - Correction factor $v_{ex} = v'_{ex} + e_s$ (systematic correction from calibration protocol).

Sampling duration, ambient conditions, extraction volume

$$B = \frac{(v_{\text{ex}}' + e_{\text{s}} + X_{\text{ex}})}{(t + X_t)(q + X_{\text{q,cal}} + X_{\text{q,rep}} + X_{q,\text{stab}}) + X_{\text{air}}}C$$

Sensitivity coefficient	c _{q,i}	c _t	C _{air}	C _{ex}
Formula	$-\beta \frac{1}{q}$	$-\beta \frac{1}{t}$	$-\beta \frac{1}{tq}$	$\beta \frac{1}{v_{\mathrm{ex}}}$
Influences	$X_{q,cal}, X_{q,rep}, X_{q,stab}$	X _t	X _{air}	$X_{\mathbf{ex}}$

Concentration: Know and assume

In an ideal world, the measured concentration in the analyser C_{an} is unaffected by the method.

Workshop: Measurement uncertainty; Rissler, Dospil, Wippich; AIRMON 2022

Concentration: Know and assume

In reality, C_{an} is affected by the method. Supply known concentrations \rightarrow recovery model

Analytics

To taken into account for measurement uncertainty

Calibration / Analyser drift

Recovery of analyte in dependence of concentration

Relative humidity; not for particles

Temperature; not for particles

Analytical Measurement

- **Calibration** of the analytical device via calibration solutions of the analyte in known concentrations
 - Analyser drift: validation of calibration via QC checks

- Uncertainties:
 - Work-day fluctuation of the sensitivity of the analytical device (maximal target-actual-difference of QC checks, e. g. 5 %)

©Sandra Seifen Fotografie

Recovery

©Sandra Seifen Fotografie

 Uncertainties: systematic (if there is no correction) and random deviation (precision)

Temperature/Relative Humidity

Do different temperatures and relative humidities influence the recovery of the analyte in the air?

Experimental determination through validation high and low humidity at the limits of the measuring range (n = 6) Experimental determination through validation high and low temperature at the limits of the measuring range (n = 6)

If there is an influence on the recovery, it is part of the measurement uncertainty: Systematic (if there is no correction) and random deviation

Concentration: Know and assume

- Regression analysis: • Truth $C_{an} = \alpha_0 + \alpha_1 C + \varepsilon$ • Can = $a_0 + a_1 C + X_{c,est} + X_{c,ran}$
- The estimates a₀, a₁ have uncertainties (standard errors) → uncertainty of regression line (confidence interval) Additional uncertainty term for using regression estimate X_{c,est}
- We are interested in $C \rightarrow$ inverse regression: $C = \frac{C_{an} + X_{c,ran} - a_0}{a_1} + X_{c,est} \text{ (symmetric distributions } \rightarrow \text{ plus signs)}$ $B = \frac{V_{ex}}{TQ}C = \frac{V_{ex}}{TQ} \left[\frac{1}{a_1}(C_{an} - a_0) + X_{c,ran} + X_{c,est}\right]$

 $C_{\rm an} = \alpha_0 + \alpha_1 C + \varepsilon$

 C_{an}

2022 version changed! $X_{c,ran}$ refered 2022 to C_{an} . Now it refers correctly to C.

2022 version changed! $X_{c,ran}$ refered 2022 to C_{an} . Now it refers correctly to *C*.

Concentration: Know and assume

- Now, we plug in the other influences that affect C_{an} as usual: $C_{an} = c_{an} + \sum X_{c,i}$
- The drift of the analyser $X_{c,drift}$, the uncertainty of the calibration function $X_{c,cal}$, the humidity $X_{c,H}$, and temperature $X_{c,\tau}$

$$B = \frac{V_{\text{ex}}}{TQ}C = \frac{V_{\text{ex}}}{TQ} \left[\frac{1}{a_1} \left(c_{\text{an}} + X_{\text{c,drift}} + X_{\text{c,cal}} + X_{\text{c,H}} + X_{\text{c,\tau}} - a_0 \right) + X_{\text{c,ran}} + X_{\text{c,est}} \right]$$

Sensitivity coefficient	C _{c,i}	c _{c,est}	
Formula	$\beta \frac{1}{c_{\rm an} - a_0}$	$\beta \frac{1}{c}$	
Influences	$X_{c,drift}, X_{c,cal}, X_{c,H}, X_{c,\tau}$	$X_{c,ran}, X_{c,ran}$	

2022 version changed! $X_{c,ran}$ refered 2022 to C_{an} . Now it refers correctly to C.

Summary

• We have set up a model for the mass concentration.

$$B = \frac{(v_{\text{ex}}' + e_{\text{s}} + X_{\text{ex}}) \left[\frac{1}{a_{1}} \left(c_{\text{an}} + X_{\text{c,drift}} + X_{\text{c,cal}} + X_{\text{c,H}} + X_{c,\tau} - a_{0} \right) + X_{\text{c,ran}} + X_{\text{c,est}} \right]}{(t + X_{\text{t}})(q + X_{\text{q,cal}} + X_{\text{q,rep}} + X_{\text{q,stab}}) + X_{\text{air}}}$$

- Variables: random numbers $\{X_i\}$ colours for different quantities
- Constants: systematic corrections $(e_s, a_{\{0,1\}})$ or measured values (v'_{ex}, c_{an}, t, q)
- One can calculate β , the measured value of the mass concentration:

$$\beta = \frac{v_{\text{ex}}' + e_{\text{s}}}{tq} \frac{1}{a_1} (c_{\text{an}} - a_0) = \frac{v_{\text{ex}}}{tq} \frac{(c_{\text{an}} - a_0)}{a_1}$$

Summary

- We have set up a model for the mass concentration.
- We have all sensitivity coefficients for the variables.

Sensitivity coefficient	$c_{\mathbf{q},i}$	C _t	C _{air}	C _{ex}	C _{c,i}	C _{c,est}
Formula	$-\beta \frac{1}{q}$	$-\beta \frac{1}{t}$	$-\beta \frac{1}{tq}$	$\beta \frac{1}{v_{\rm ex}}$	$\beta \frac{1}{c_{\rm an} - a_0}$	$\beta \frac{1}{c}$
Influences	Calibration, Repeatability, Stability	Duration (all)	Ambient conditions (all)	Extraction volume	Drift, Calibration, Humidity, Temperature	Recovery model, repeatability

Summary

Standard deviations

Derived from available information

How does one get the σ_i ?

- We make estimates: $\sigma_i \rightarrow s_i$
- There are three main cases:
 - "Limit of error" $y \pm b$
 - Known σ_i from other source
 - Known from own measurement (here, regression analysis)

Limit of error

- A given influence changes the measured value y only within fixed boundaries: $y \pm b$ (limit of error)
- Assume a uniform distribution form based on the principle of maximum entropy.

Standard deviation is half width *b* over
$$\sqrt{3}$$

 $y-b$ $y+b$
 $\sigma_i \rightarrow s_i = \frac{b}{\sqrt{3}}$

Example:

How large is the standard deviation for reading off the last digit on a digital display of a scale with the unit 1 g? $\rightarrow s = \frac{0.5}{\sqrt{3}} g$

Other source: use as given

- If you find a standard deviation, use it as given.
- Assume normal distribution based on the principle of maximum entropy.
- Interpret the given information
- Example: Calibration protocol: "The expanded 95 % uncertainty region is ± 4 % of the measured value." $\rightarrow s = y \cdot 0.04/1.96$

Derive standard deviations

All sources of information apart from own measurements

Overview – no own measurements

Influence	X _i	Source
Duration (all)	X _t	ISO 22065
Pump calibration	$X_{q,cal}$	ISO 20581 (worst case Table B.1)
Pump repeatability	$X_{q,rep}$	ISO 20581 (worst case Table B.1)
Pump flow stability	X _{q,stab}	ISO 13137 (norm requirement)
Extraction volume (rand.)	$X_{\mathbf{ex}}$	Calibration protocol
Ambient conditions	X _{air}	Experience (Limit of error \pm 5 %)
Analyser drift	X _{c,drift}	Experience (Limit of error \pm 10 %)
Calibration	X _{c,cal}	Calibration measurement
Humidity, Temperature, Concentration (est./rand.)	$X_{c,{H,\tau,ran,est}}$	Recovery measurement

Extraction volume (random) – use as given

There is information on the random influence of the volumentric instrument in the calibration protocol

	Actual values
Mean value:	2499.60 μL
Systematic deviation:	-0.02 (Es) [%]
Random Deviation:	0.02 (CV) [%]

• CV: coefficient of variation:

$$\frac{s_r}{\bar{V}} 100\% = 0.02\% \to s_r = \frac{2499.6 \cdot 0.02}{100} \mu L \approx 0.5 \mu L$$

Duration – use as given

- Guideline and discussion, e.g., in ISO 22065
 - Measurement is started/ended ended within 0.5 min before/after the true start/end of the measurement. → assume ± 1 min and neglect other terms (reading error ...)

• Standard proposes triangular distribution. \rightarrow Use $s_i = \frac{1}{\sqrt{6}} \min \approx 0.408 \min$

Influence	X _i	<i>ci</i>	s _i	
Duration (all)	X _t	$-\beta \frac{1}{t}$	0.408 min	\checkmark

Volume flow stability – limit of error

- ISO 20581 on flow stability: "ISO 13137 requires that the flow rate is maintained to within ± 5 %."
 - Use limit of error ($b = q \cdot 0.05$): $s_{q,stab} = \frac{q \cdot 0.05}{\sqrt{3}}$

Influence	X _i	<i>ci</i>	s _i	
Pump flow stability	X _{q,stab}	$-\beta \frac{1}{q}$	$\frac{q \cdot 0.05}{\sqrt{3}}$	

Analyser drift – limit of error

- "Experience shows that the analyser drift changes the measured concentration within $\pm~10~\%.^{\prime\prime}$
 - Limit of error, half width $b = c_{an} \cdot 0.10 \rightarrow s_{an} = \frac{c_{an} \cdot 0.10}{\sqrt{3}}$

Influence	X _i	<i>ci</i>	s _i	
Analyser drift	X _{c,drift}	$\beta \frac{1}{c_{\rm an} - a_0}$	$\frac{c_{\rm an} \cdot 0.10}{\sqrt{3}}$	\checkmark

Overview – no own measurements

Influence	X _i	Source	
Duration (all)	X _t	ISO 22065	
Pump calibration	$X_{q,cal}$	ISO 20581 (worst case Table B.1)	
Pump repeatability	$X_{q,rep}$	ISO 20581 (worst case Table B.1)	
Pump flow stability	$X_{q,stab}$	ISO 13137 (norm requirement)	
Extraction volume (rand.)	X _{ex}	Calibration protocol	\checkmark
Ambient conditions	X _{air}	Experience (Limit of error \pm 5 %)	
Analyser drift	X _{c,drift}	Experience (Limit of error \pm 10 %)	\checkmark

Overview – no own measurements

Missing standard devitations are found in the same way

X _i	Source	
X _t	ISO 22065	use given uncertainty
$X_{q,cal}$	ISO 20581 (worst case Table B.1)	$\longrightarrow 5.2\% \longrightarrow s_{q,cal} = q \cdot 0.052$
$X_{q,rep}$	ISO 20581 (worst case Table B.1)	$2.3\% \longrightarrow s_{q,rep} = q \cdot 0.023$
$X_{q,stab}$	ISO 13137 (norm requirement)	
X _{ex}	Calibration protocol	
X _{air}	Experience (Limit of error \pm 5 %)	$same as drift \qquad \qquad$
X _{c,drift}	Experience (Limit of error \pm 10 %)	

Workshop: Measurement uncertainty; Rissler, Dospil, Wippich; AIRMON 2022

Summary – other source

Key approach: To use the limit of error approach allows you to describe your own experience.

 $s_i = \frac{1}{\sqrt{3}}$

With the table, one can derive the combined standard deviation (up to the missing terms $X_{c,{H,T,ran,est,cal}}$):

$$s_{\rm c} = \sqrt{\sum_i c_i^2 s_i^2} \rightarrow B = \beta \pm 1.96 \ s_{\rm c}$$

Could be dealt with in a spread sheet

Influence	X _i	c _i	s _i
Duration (all)	X _t	$-etarac{1}{t}$	0,408 min
Pump calibration	$X_{q,cal}$		$q \cdot 0.052$
Pump repeatability	X _{q,rep}	$-\beta \frac{1}{a}$	$q \cdot 0.023$
Pump flow stability	X _{q,stab}	Ч	$\frac{q \cdot 0.05}{\sqrt{3}}$
Extraction volume (rand.)	X _{ex}	$\beta \frac{1}{v_{\rm ex}}$	0.5µl
Ambient conditions	X _{air}	$-\beta rac{1}{k_{\mathrm{air}} t q}$	$\frac{tq \cdot 0.05}{\sqrt{3}}$
Analyser drift	$X_{c,drift}$	$\beta \frac{1}{c_{\rm an} - a_0}$	$\frac{c_{\rm an} \cdot 0.10}{\sqrt{3}}$

Derive standard deviations

Regression analyses

Recovery/calibration – non-constant variance

- Homoscedasticity: ε has constant variance $C_{an} = \alpha_0 + \alpha_1 C + \varepsilon$ with $\varepsilon \sim \mathcal{N}(0, \sigma_{c,ran}^2)$
- Heteroscedasticity: ε has **not** a constant variance
- Variance s_i^2 increases with c_i .

- You cannot do ordinary least squares fit (OLS) for the estimates a_0 , a_1
- Do weighted regression (Draper & Smith 1998):
 - Determine s_i
 - Weight the dependent values y with $w_i = \frac{1}{s_i^2}$

(Supply a vector with the w_i to the regression routine)

Draper N. R., Smith H., Applied Regression Analysis (1998) 3rd edition, Wiley.

2022 version changed! $X_{c,ran}$ refered 2022 to C_{an} . Now it refers correctly to C.

Concentration random

• Variation around the regression line $X_{c,ran}$

$$B = \frac{V_{\text{ex}}}{TQ} \left[\frac{1}{a_1} (C_{\text{an}} - a_0) + X_{\text{c,ran}} + X_{\text{c,est}} \right]$$

- Heteroscedasticity: $C_{an} = \alpha_0 + \alpha_1 C + \varepsilon$ Variance s_i^2 is surprisingly often quadratic in c: $\varepsilon(0, k_{\varepsilon}c^2)$
- Determine k with fit: $s_i^2 = k_{\varepsilon}c^2$

2022 version changed! $X_{c,ran}$ refered 2022 to C_{an} . Now it refers correctly to C.

Concentration random

- 1. Determine s_i standard deviations
- 2. Regression coefficient for recovery variance k_{ε} Fit: $s_i^2 = k_{\varepsilon}c_i^2 \rightarrow s_{c,ran} = \sqrt{k_{\varepsilon}c^2}$
- 3. Check coefficient of determination $R^2 > 0.95$. If not, try $s_i^2 = k_{\varepsilon}c$.
- 4. Take k_{ε} and calculate *s*

Influence	X _i	<i>ci</i>	s _i	
Concentration (random)	X _{c,ran}	$\beta \frac{1}{c}$	$\sqrt{k_{\varepsilon}c(c_{\mathrm{in}})^2}$	\checkmark

Concentration estimate

- The uncertainty of the regression line is largest on the boundaries of the covered range.
 - → If we leave this range, we may observe a severe increase in the uncertainty.
- We derive desired quantities x_{obs} by inverse regression from measured quantities y_{obs}: y_{obs} → x_{obs}; calibration: area → c_{an}; recovery: c_{an} → c
- The uncertainty of x_{obs} due to the inverse regression is given by a "fiducial limit"

$$x_{\rm l} \le x_{\rm obs} \le x_{\rm u}$$

• Solve $y_{obs} = \hat{y}_i \pm \Delta y_{obs} = (a_0 + a_1 x) \pm \Delta y_{obs}$. This determines $x_{l,u}$.

The fiducial limit is not a confidence interval. It can be treated as a limit of error: $s = \frac{x_u - x_l}{2\sqrt{3}}$

Calibration/recovery – heteroscedasticity

- Do weighted regression. Weight the dependent values y_i with $w_i = \frac{1}{s_i^2} \rightarrow$ weighted $\Delta y_{\text{obs,w}}$
- Solve $y_{obs} = \hat{y}_i \pm \Delta y_{obs,w}$ for $x_{l,u}$
- Construct the uncertainty limit of error:

$$s = \frac{x_{\rm u} - x_{\rm l}}{2\sqrt{3}}$$

Influence	X _i	c _i	s _i
Calibration	X _{c,cal}	$\beta \frac{1}{c_{\rm an} - a_0}$	$s_{c,cal} = \frac{x_u - x_l}{2\sqrt{3}}$ (Calibration data)
Concentration (est.)	X _{c,est}	$\beta \frac{1}{c}$	$s_{c,est} = \frac{x_u - x_l}{2\sqrt{3}}$ (Recovery data)

Recovery – humidity and temperature

• Include humidity *H* and temperature τ in the linear recovery model $f_{rec}(C, H, \tau)$:

$$C_{\text{an}} = \alpha_0 + \alpha_1 C + \underbrace{\alpha_{\text{H}} C H + \alpha_{\text{T}} C \tau}_{X_{\text{c},\text{H}} + X_{\text{c},\tau}} + \varepsilon(\sigma(C))$$

- In principle, *H* and τ are correlated. However, τ affects mainly the filter capacity (ISO 22065). Conditions do not cover interaction of *H* and τ .
- Recovery conditions cover ",worst case ranges" \rightarrow Transfer $\alpha_{\rm H}CH$, $\alpha_{\rm T}C\tau$ into $X_{\rm c,H}$, $X_{\rm c,\tau}$
 - What is the worst case range of C_{an} depending on H and τ ? \rightarrow Worst case range – limit of error

Recovery – humidity and temperature

What is the worst case range of C_{an} depending on *H*? Worst case change $\pm a_{\rm H}C$

- $\hat{C}_{an} = a_0 + a_1 C$ $\rightarrow a_1$ is the change in \hat{C}_{an} if C changes ± 1 unit
- Use dummies $h = \{-1,0,1\} \leftrightarrow \{20\%, 50\%, 80\%\}$ $\hat{C}_{an} = a_0 + a_1C + a_HCh$ $\rightarrow a_HC$ is the change in \hat{C}_{an} if h changes ± 1
- Consider standard errors $s(a_{\rm H,\tau})$ of $a_{\rm \{H,\tau\}}$ $s_{\rm H,T} = \frac{(a_{\rm H,\tau} + t_{n-1,0.975} \cdot s(a_{\rm H,\tau}))c}{\sqrt{2}}$

Influence
$$X_i$$
 c_i s_i Humidity, Temperature $X_{c,{H,\tau}}$ $\beta \frac{1}{c_{an} - a_0}$ $\frac{\left(a_{{H,T}} + t_{\nu,1-\alpha/2} \cdot s(a_{{H,T}})\right)c}{\sqrt{3}}$

2022 version changed! $X_{c,ran}$ refered 2022 to C_{an} .

Now it refers correctly to *C*.

Summary

- Make measurements v'_{ex} , c_{an} , t, qtake corrections into account (e_s , $a_{\{0,1\}}$)
- Build the model $(\mathbf{Y} = \mathbf{y} + \sum_{i} X_{i})$ \rightarrow Get the $\{c_{i}\}$ from the mathematical model.
- Get the {s_i}: Information of regression, other sources (^b/_{√3})
 → App is needed for regression
- Declare 95 % expanded uncertainty:

$$s_{\rm c} = \sqrt{\sum_i c_i^2 s_i^2} \rightarrow B = \beta \pm 1.96 s_{\rm c}$$

$$B = \frac{(v_{ex}' + e_s + X_{ex}) \left[\frac{1}{a_1} \left(c_{an} + X_{c,drift} + X_{c,cal} + X_{c,H} + X_{c,\tau} - a_0 \right) + X_{c,ran} + X_{c,est} \right]}{(t + X_t) (q + X_{q,cal} + X_{q,rep} + X_{q,stab}) + X_{air}}$$

Influence	X _i	c _i	s _i
Duration (all)	X _t	$-\beta \frac{1}{t}$	0,408 min
Pump calibration	$X_{q,cal}$		$q \cdot 0.052$
Pump repeatability	X _{q,rep}	$-\beta \frac{1}{2}$	$q \cdot 0.023$
Pump flow stability	$X_{q,stab}$	' q	$\frac{q \cdot 0.05}{\sqrt{3}}$
Extraction volume (rand.)	X _{ex}	$\beta \frac{1}{v_{\rm ex}}$	0.5µl
Ambient conditions	X _{air}	$-\beta \frac{1}{tq}$	$\frac{tq \cdot 0.05}{\sqrt{3}}$
Analyser drift	X _{c,drift}	$\beta \frac{1}{c_{\mathrm{an}} - a_0}$	$\frac{c_{\rm an} \cdot 0.10}{\sqrt{3}}$
Concentration (ran.) (Recovery data)	X _{c,ran}	$\beta \frac{1}{c}$	$\sqrt{k_{ m \epsilon}c(c_{ m in})}$
Calibration (Calibration data)	$X_{\rm c,cal}$	$\beta \frac{1}{c_{\rm an} - a_0}$	$s_{\rm c,cal} = \frac{x_{\rm u} - x_{\rm l}}{2\sqrt{3}}$
Concentration (est.) (Recovery data)	X _{c,est}	$\beta \frac{1}{c}$	$s_{\rm c,est} = \frac{x_{\rm u} - x_{\rm l}}{2\sqrt{3}}$
Humidity, Temperature (Recovery data)	<i>X</i> _{c,{H,T}}	$\beta \frac{1}{c_{\rm an}-a_0}$	$\frac{\left(a_{\mathrm{\{H,\tau\}}}+t_{\nu,1-\alpha/2}\cdot s(a_{\mathrm{\{H,\tau\}}})\right)c}{\sqrt{3}}$

Implementation into the App

Example: Extraction

Model data – Everything, except for own measurements

Table: Influence, Parameters, Sensitivity coefficients and example

Influence	Xi	Ci	Si		Table: Model data sheet
Duration (all)	X _t	$-\beta \frac{1}{t}$	0.408 min		information
Pump calibration	$X_{q,cal}$	τ	$q \cdot 0.052$		unit_beta
Pump repeatability	X _{q,rep}	$-\beta \frac{1}{\alpha}$	$q \cdot 0.023$	L,	
Pump flow stability	X _{q,stab}	q	$\frac{q \cdot 0.05}{\sqrt{3}}$		q_cal
Extraction vol. (rand.)	X _{ex}	$-\beta \frac{1}{v_{\rm ex}}$	0.5 μL		q_rep
Extraction vol. (sys. corr)	e _s	-	-0.000005 L		v_stab V_ex_rand_3
Ambient conditions	X _{air}	$-\beta \frac{1}{tq}$	$\frac{tq \cdot 0.05}{\sqrt{3}}$	L,	V_ex_corr_3
Analyser drift	X _{c,drift}	$\beta \frac{1}{c_{\rm an} - a_0}$	$\frac{c_{\rm an} \cdot 0.10}{\sqrt{3}}$		c_drift

Workshop: Measurement uncertainty; Rissler, Dospil, Wippich; AIRMON 2022

Implementation into the App using Model data

1) Supply the app with the sensitivity coefficients c_i 2) Account for units, such that $\beta = 1 \frac{\text{mg}}{\text{m}^3}$ Mass Concentration of the analyte in the air (mg≬m³) Analytical result Sampling

Table: Model data sheet

information	Indi- cator	value	percen- tage
unit_beta		1	
unit_Vol		0.001	
t_tot	1	0.408	
q_cal	2	0.030	5.2
q_rep	2	0.013	2.3
q_stab	2	0.029	5
V_ex_corr_3	1	-0.000005	
V_ex_rand_3	1	0.000005	
c_drift	2	0.058	10

Implementation into the App using Model data

1) Supply the app with the sensitivity coefficients c_i

2) Account for units, such that $\beta = 1 \frac{\text{mg}}{\text{m}^3}$

- 3) Be aware of parameter designation
 - → Letter/Text before underscore determines the c_i for value
- 4) Determine the indicator
 - \rightarrow Indicator 1 = absolute value
 - \rightarrow Indicator 2 = relative value, multiply with t, q, c ...
- 5) Determine extraction volume
 - \rightarrow Last number in V_ex_corr_3 and
 - V_ex_rand_3 determines extraction volume

Table: Model data sheet

information	Indi- cator	value	percen- tage
unit_beta		1	
unit_Vol		0.001	
t_tot	1	0.408	
q_cal	2	0.030	5.2
q_rep	2	0.013	2.3
q_stab	2	0.029	5
V_ex_corr_3	1	-0.000005	
V_ex_rand_3	1	0.000005	
c_drift	2	0.058	10

App Design

Five Datasheets

- Fundamentals:
 - Information about Method, Analyte, Validation
- Input-Calculate-Save:
 - Data Input, validated concentration, Calculation and saving of results
- <u>Recovery:</u>
 - Recovery Data and Parameters of Regression
- Calibration:
 - Calibration points, measured signals, Parameters of Regression
- <u>Model:</u>
 - Model Data and change options

Messunsicherhei	it IFA.A2					-		\times
IFA	für Arbeitsschutz der 1en Gesetzlichen Unfallv	ersicherung				Deutsch	Eng uage	plish
Fundamentals	Input-Calculate-Save	Recovery	Calibration	Model				
Informatio	n Indicator	Value	Procen	t	Description	Changed		
		_						
	and the device		Use new entities		Ormalian Used	(100.04000		
Drift of a	analytical device	Ţ			- also changes flow	w rate -	V	

Data input and Model Data in App

Calibration Data					
X,		y _{i 1}	y i 2	y _{i 3}	
9.840	14.352	13.861	14. <u>6</u> 95	14.500	
49.220	70.206	69.465	71.679	69.473	
98.440	132.330	127.148	136.263	133.580	
196.880	278.543	265.935	283.262	286.431	
295.320	402.588	392.999	398.304	416.460	
393.750	531.178	541.398	524.663	527.474	
492.190	660.305	662.501	619.434	698.980	

Temp./Hum. Recovery Data

X _{BG·20}	X _{1·20}	X _{2·20}	X _{1·80}	X _{2·80}
21.000	22.000	19.000	84.000	80.000
19.000	19.100	201.800	18.900	200.400
µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
20.326	20.326	211.803	20.377	208.227
20.258	20.258	211.684	20.540	211.020
20.308	20.308	211.364	19.999	211.930
19.976	19.976	212.559	19.928	212.083
20.341	20.341	209.893	19.570	211.152
20.259	20.259	209.172	19.489	210.682

	ir Arbeitsschutz de	r			De	utsch C En	glish
Deutsche	en Gesetzlichen Un	fallversic				Language	
undamentals	Input-Calculate-Sa	Recovery	Calibration	Model			
Data provision			Influence	Uncert.	SensCoeff.	rel. Contrib.	1
Get data	Show Err	or Messages					1
Recovery							
Calibration	n [
	ccept Model						
Validated concer	ntration						
Analyt [ng]		0					
Measured Valu	ie [Area]	0					
Flow rate [L/mi	n]	0					
Sampling dura	tion [min]	0					
Digestion volur	ne (mL)	0					
	_						
Calculate		Save					
Result							
beta [mg/	m²]	0.00e+00					
1	u_c	0.00e+00					
U [mg/	'm³]	0.00e+00					
U	[%]	0					

Model Data

information	indi- cator	value	perce n-tage
unit_beta		1	
unit_Vol		0.001	
t_tot	1	0.408	
q_cal	2	0.030	5.2
q_rep	2	0.013	2.3
q_stab	2	0.029	5
V_ex_corr_3	1	-0.000005	
V_ex_rand_3	1	0.000005	
c_drift	2	0.058	10

Recovery Data					
X 1	X2	X ₃			
19.100	47.500	198.100			
µg/m³	µg/m³	µg/m³			
19.239	50.145	214.005			
19.501	49.690	210.950			
19.245	50.032	212.336			
19.516	49.649	207.206			
19.417	49.998	209.606			
19.447	50.176	208.290			