

Ringversuche für Gefahrstoffmessstellen – Ergebnismitteilung

Ringversuch Organische Lösemittel mit eigener Probenahme

20. - 21. Februar 2024

Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA) B. Maybaum, K. Gusbeth, R. Schneck, F. Nürnberger, K. Pitzke Alte Heerstraße 111, 53757 Sankt Augustin

Tel.: +49 30 13001 3299 E-Mail: Ringversuche@dguv.de

Zusammenfassung der Labormessergebnisse Probe 1

Labor	1-Butanol	Z-Score	1-Methoxy-2-Propanol	Z-Score	1-Propanol	Z-Score	2-Butanol	Z-Score	
Einheit	mg/m³		mg/m³		mg/m³		mg/m³		
1	163,0	-0,13	60,7	-1,10			125,0	0,39	
26	186,5	1,29	72,8	0,68	31,1	0,69	142,6	1,85	
33	189,0	1,44	71,3	0,46	31,7	0,88	143,0	1,88	
39	122,0	-2,61 E	61,9	-0,92	30,2	0,36	100,0	-1,69	
40	163,8	-0,08			27,6	-0,53	118,3	-0,17	
42	169,0	0,23	70,2	0,30	27,1	-0,70	122,0	0,14	
72	161,7	-0,21	62,8	-0,79	27,3	-0,62	116,8	-0,29	
78	168,1	0,17	66,2	-0,29	26,7	-0,84	123,6	0,27	
116	133,0	-1,95	59,9	-1,21			106,0	-1,19	
130	155,8	-0,57	59,5	-1,28	25,3	-1,33	116,7	-0,31	
139	173,3	0,49	81,3	1,93	33,5	1,51	147,0	2,22 E	
167	154,0	-0,68	59,0	-1,35	24,0	-1,76	110,0	-0,86	
188	160,0	-0,31	57,3	-1,60	27,6	-0,53	121,3	0,08	
234	216,9	3,13 E	86,8	2,73 E	35,1	2,05 E	170,5	4,16 FE	
236									
238	134,3	-1,87	59,3	-1,30	18,4	-3,69 FE	100,9	-1,62	
252									
256	147,4	-1,08	79,8	1,71	28,7	-0,15	136,5	1,34	
297	210,0	2,71 E	82,0	2,03 E	32,0	0,98	96,0	-2,02 E	
_	_		_		_		_		
Methode	ISO 5725-2		ISO 5725-2		ISO 5725-2		ISO 5725-2		
Anzahl der Labore, die Ergebnisse vorgelegt haben	17		16		15		17		
Mittelw ert	165,2		68,2		29,1		120,4		
VglStdabw .	25,3		9,8		3,2		15,8		
Rel.Vergleich-Stdabw .	15,31 %		14,34 %		11,05 %		13,13 %		
Referenzw ert	176,4		70,6		27,6		129,1		
Soll-Stdabw .	16,5		6,8		2,9		12,0		
Rel.Soll-Stdabw .	10,00 %		10,00 %		10,00 %		10,00 %		

Labor	1-Butanol	Z-Score	1-Methoxy-2-Propanol	Z-Score	1-Propanol	Z-Score	2-Butanol	Z-Score
unt. Toleranzgr.	132,1		54,5		23,3		96,3	
ob. Toleranzgr.	198,2		81,8		35,0		144,4	
Anzahl F-Ausreißer					1		1	
Anzahl teilnehmender Labore, nach der Eliminierung der Ausreißer A-D und F (ohne Labore, die keine Messw erte, sondern nur einen Status angegeben haben)	17		16		14		16	
Erläuterung der Ausreißertypen								
A: Einzelausreißer	Grubbs							
B: abw . Labormittelw ert	Grubbs							
C: überh. Labor-Stdabw .	Cochran							
D: manuell entfernt								
E: Mittelw ert außerhalb TolBereich								
F: Z-Score >3,50								

Labor	2-Propanol	Z-Score	i-Butanol	Z-Score
Einheit	mg/m³		mg/m³	
1	78,9	-0,05	57,5	0,45
26	89,7	1,31	57,0	0,36
33	90,6	1,42	65,4	1,89
39	47,7	-3,99 FE	47,5	-1,37
40	78,5	-0,10	53,9	-0,20
42	77,5	-0,23	54,6	-0,08
72	76,3	-0,38	54,3	-0,14
78	77,5	-0,23	55,5	0,08
116	53,2	-3,29 E	47,2	-1,42
130	73,2	-0,77	49,8	-0,95
139	93,5	1,79	67,6	2,28 E
167	71,0	-1,05	50,0	-0,91
188	74,7	-0,58	52,4	-0,48
234	99,7	2,57 E	73,9	3,42 E
236	76,9	-0,30		

Labor	2-Propanol	Z-Score	i-Butanol	Z-Score
238	58,2	-2,66 E	44,2	-1,97
252	78,3	-0,13		
256	83,0	0,46	52,7	-0,42
297	97,0	2,23 E	52,0	-0,55
-	_		_	
Methode	ISO 5725-2		ISO 5725-2	
Anzahl der Labore, die Ergebnisse	19		17	
vorgelegt haben				
Mittelw ert	79,3		55,0	
VglStdabw .	12,0		7,7	
Rel.Vergleich-Stdabw .	15,16 %		13,94 %	
Referenzw ert	81,5		58,4	
Soll-Stdabw .	7,9		5,5	
Rel.Soll-Stdabw .	10,00 %		10,00 %	
unt. Toleranzgr.	63,5		44,0	
ob. Toleranzgr.	95,2		66,0	
Anzahl F-Ausreißer	1			
Anzahl teilnehmender Labore, nach der	18		17	
Eliminierung der Ausreißer A-D und F				
(ohne Labore, die keine Messwerte,				
sondern nur einen Status angegeben haben)				
nabon)				

Zusammenfassung der Labormessergebnisse Probe 2

Labor	1,2,4-Trimethylbenzol	Z-Score	Cumol	Z-Score	Ethylacetat	Z-Score	Ethylbenzol	Z-Score
Einheit	mg/m³		mg/m³		mg/m³		mg/m³	
1	16,8	-0,97	47,3	-0,98	152,0	-0,12	56,7	-1,45
26	17,0	-0,85	47,3	-0,98	158,4	0,30	59,8	-0,99
33	16,0	-1,40	55,3	0,54	179,0	1,64	69,4	0,46
39	16,1	-1,35	57,8	1,02	127,0	-1,74	68,0	0,25
40			49,7	-0,52			70,7	0,65
42	19,2	0,32	49,8	-0,50	148,0	-0,38	62,7	-0,55
72	20,1	0,83	51,9	-0,11	148,9	-0,32	70,2	0,59
78	20,1	0,78	54,7	0,43	157,1	0,22	67,8	0,22
116	17,2	-0,76	55,1	0,52	131,0	-1,48	60,5	-0,87
130	19,4	0,43	51,9	-0,10	149,5	-0,28	63,1	-0,49
139	20,9	1,24	54,6	0,42	149,1	-0,31	68,6	0,33
167	20,0	0,75	53,0	0,11	144,0	-0,64	67,0	0,10
188	19,8	0,64	52,1	-0,07	156,7	0,19	66,4	0,01
234	24,3	3,05 E	64,6	2,31 E	201,4	3,10 E	82,1	2,38 E
236	19,1	0,26	50,4	-0,39	150,0	-0,25	62,5	-0,58
238	16,6	-1,08	45,7	-1,29	129,2	-1,60	58,9	-1,12
239							60,2	-0,93
252					149,1	-0,30		
256	14,7	-2,10 E	45,8	-1,27	157,7	0,25	72,9	0,99
297	19,0	0,21	57,0	0,87	180,0	1,70	73,0	1,00
_	-		_		_		_	
Methode	ISO 5725-2		ISO 5725-2		ISO 5725-2		ISO 5725-2	
Anzahl der Labore, die Ergebnisse	17		18		18		19	
vorgelegt haben								
Mittelw ert	18,6		52,4		153,8		66,3	
VglStdabw .	2,3		4,8		18,4		6,2	
Rel.Vergleich-Stdabw .	12,52 %		9,06 %		11,93 %		9,34 %	
Referenzw ert	19,6		50,9		147,6		64,9	
Soll-Stdabw .	1,9		5,2		15,4		6,6	

F: |Z-Score|>3,50

Labor	1,2,4-Trimethylbenzol	Z-Score	Cumol	Z-Score	Ethylacetat	Z-Score	Ethylbenzol	Z-Score
Rel.Soll-Stdabw .	10,00 %		10,00 %		10,00 %		10,00 %	
unt. Toleranzgr.	14,9		42,0		123,0		53,1	
ob. Toleranzgr.	22,3		62,9		184,5		79,6	
Anzahl teilnehmender Labore, nach der Eliminierung der Ausreißer A-D und F (ohne Labore, die keine Messwerte, sondern nur einen Status angegeben haben)	17		18		18		19	
Erläuterung der Ausreißertypen								
A: Einzelausreißer	Grubbs							
B: abw . Labormittelw ert	Grubbs							
C: überh. Labor-Stdabw .	Cochran							
D: manuell entfernt								
E: Mittelw ert außerhalb TolBereich								

Labor	m-Xylol	Z-Score	n-Hexan	Z-Score	n-Octan	Z-Score	Toluol	Z-Score	
Einheit	mg/m³		mg/m³		mg/m³		mg/m³		
1	61,7	-1,28	55,6	-0,76	64,7	-2,69 E	23,9	-1,32	
26	63,5	-1,03	52,9	-1,20	82,7	-0,66	24,5	-1,11	
33	67,6	-0,45	64,7	0,75	88,0	-0,06	29,7	0,78	
39	69,3	-0,21	68,2	1,34	102,1	1,53	28,6	0,38	
40					89,8	0,14	25,4	-0,78	
42	68,0	-0,39	52,8	-1,22	82,4	-0,69	26,8	-0,27	
72	70,4	-0,06	51,6	-1,43	84,2	-0,49	27,8	0,08	
78	72,8	0,29	65,5	0,88	85,8	-0,31	29,5	0,70	
116	62,7	-1,14	67,3	1,19	90,3	0,20	25,0	-0,93	
130	67,6	-0,45	52,8	-1,23	83,7	-0,55	26,0	-0,57	
139	74,5	0,53	52,9	-1,21	89,4	0,10	27,8	0,10	
167	72,0	0,17	60,0	-0,03	90,0	0,16	28,0	0,16	
188	71,3	0,07	56,8	-0,56	87,7	-0,10	27,8	0,09	
234	87,8	2,40 E	79,5	3,22 E	108,5	2,25 E	34,6	2,56 E	
236	69,5	-0,18			90,6	0,23	26,9	-0,24	

sondern nur einen Status angegeben

haben)

Labor	m-Xylol	Z-Score	n-Hexan	Z-Score	n-Octan	Z-Score	Toluol	Z-Score	
238	63,2	-1,07	56,5	-0,61	83,3	-0,59	25,3	-0,82	
239	68,6	-0,31					25,4	-0,78	
252							26,1	-0,53	
256	82,7	1,68	46,5	-2,27 E	92,7	0,47	30,9	1,22	
297	81,0	1,44	79,0	3,13 E	98,0	1,07	31,0	1,25	
_	-		_		_		_		
Methode	ISO 5725-2		ISO 5725-2		ISO 5725-2		ISO 5725-2		
Anzahl der Labore, die Ergebnisse vorgelegt haben	18		16		18		20		
Mittelw ert	70,8		60,2		88,6		27,5		
VglStdabw .	7,1		9,7		9,1		2,6		
Rel.Vergleich-Stdabw.	10,00 %		16,14 %		10,31 %		9,56 %		
Referenzw ert	71,0		54,8		84,9		27,9		
Soll-Stdabw.	7,1		6,0		8,9		2,8		
Rel.Soll-Stdabw .	10,00 %		10,00 %		10,00 %		10,00 %		
unt. Toleranzgr.	56,6		48,1		70,8		22,0		
ob. Toleranzgr.	85,0		72,2		106,3		33,1		
Anzahl teilnehmender Labore, nach der Eliminierung der Ausreißer A-D und F	18		16		18		20		
(ohne Labore, die keine Messw erte,									

Zusammenfassung der Labormessergebnisse Probe 3

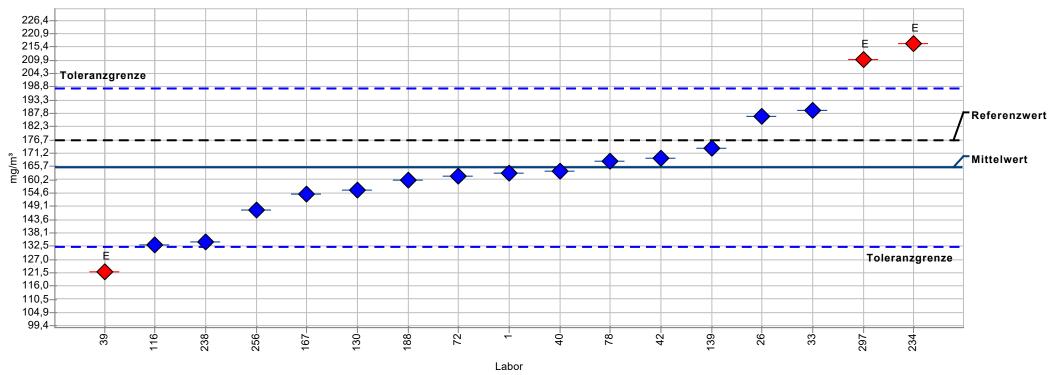
Labor	4-Methyl-2-pentanon	Z-Score	Cyclohexanon	Z-Score	Cyclopentanon	Z-Score	Hexan-2-on	Z-Score
Einheit	mg/m³		mg/m³		mg/m³		mg/m³	
1	48,9	-2,21 E	48,6	0,35	39,2	1,22	29,0	0,23
26	67,6	0,77	40,4	-1,40	32,8	-0,60	26,9	-0,51
33	65,5	0,43	47,0	0,00	9,8	-7,19 FE	34,5	2,17 E
39	35,5	-4,35 FE	7,2	-8,48 FE	2,9	-9,16 FE	12,2	-5,72 BE
40	61,7	-0,17	40,8	-1,32	36,5	0,45	26,2	-0,77
42	60,0	-0,45	49,8	0,60	36,9	0,57	26,4	-0,69
72	87,4	3,92 FE	48,5	0,31	33,8	-0,33	36,0	2,71 E
78	62,6	-0,02	54,1	1,51	39,7	1,38	27,8	-0,21
116	41,1	-3,46 E	52,1	1,09	32,2	-0,78	21,4	-2,45 E
130	63,6	0,13	47,5	0,10	28,1	-1,94	28,4	0,01
139	65,0	0,35	53,1	1,31	37,3	0,69	27,7	-0,25
167	66,0	0,51	55,0	1,71	40,0	1,45	29,0	0,23
188	65,8	0,48	26,8	-4,30 FE	14,8	-5,76 FE	26,9	-0,51
234	78,7	2,52 E	30,7	-3,46 E	21,4	-3,88 E	34,9	2,31 E
236	62,4	-0,06					27,5	-0,30
238	50,4	-1,97	37,5	-2,02 E				
256	68,4	0,89	52,6	1,20	41,1	1,77	25,2	-1,11
297	77,0	2,26 E	75,0	5,96 FE	44,0	2,60 FE	26,0	-0,83
-	_		_		_		-	
Methode	ISO 5725-2		ISO 5725-2		ISO 5725-2		ISO 5725-2	
Anzahl der Labore, die Ergebnisse	18		17		16		17	
vorgelegt haben								
Mittelw ert	62,8		47,0		34,9		28,4	
VglStdabw .	9,5		7,1		5,7		3,8	
Rel.Vergleich-Stdabw .	15,20 %		15,15 %		16,40 %		13,47 %	
Referenzw ert	59,5		45,9		36,3		27,0	
Soll-Stdabw .	6,3		4,7		3,5		2,8	
Rel.Soll-Stdabw .	10,00 %		10,00 %		10,00 %		10,00 %	
unt. Toleranzgr.	50,2		37,6		27,9		22,7	

Labor	4-Methyl-2-pentanon Z-Score	Cyclohexanon Z-Score	Cyclopentanon Z-Score	Hexan-2-on Z-Score
ob. Toleranzgr.	75,4	56,4	41,9	34,0
Anzahl B-Ausreißer				1
Anzahl F-Ausreißer	2	3	4	
Anzahl teilnehmender Labore, nach der Eliminierung der Ausreißer A-D und F (ohne Labore, die keine Messwerte, sondern nur einen Status angegeben haben)	16	14	12	16
Erläuterung der Ausreißertypen				
A: Einzelausreißer	Grubbs			
B: abw . Labormittelw ert	Grubbs			
C: überh. Labor-Stdabw .	Cochran			
D: manuell entfernt				

F: |Z-Score|>3,50

E: Mittelw ert außerhalb Tol.-Bereich

Methode:

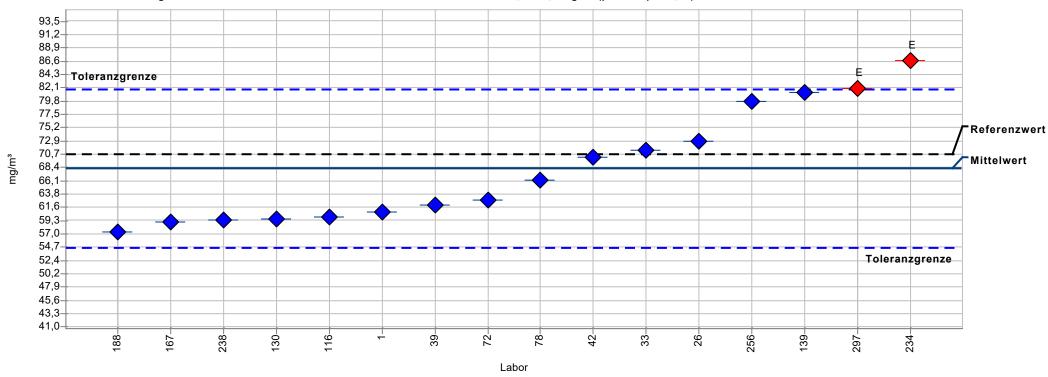

Merkmal: 1-Butanol Mittelwert: 165,2 mg/m³

Probe: 1 Vgl.-Stdabw.: 25,3 mg/m³

ISO 5725-2

Rel. Soll-Stdabw.: 10,00% Referenzwert: 176,4 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 17 Toleranzbereich: 132,1 - 198,2 mg/m³ (|Z-Score| <= 2,00)

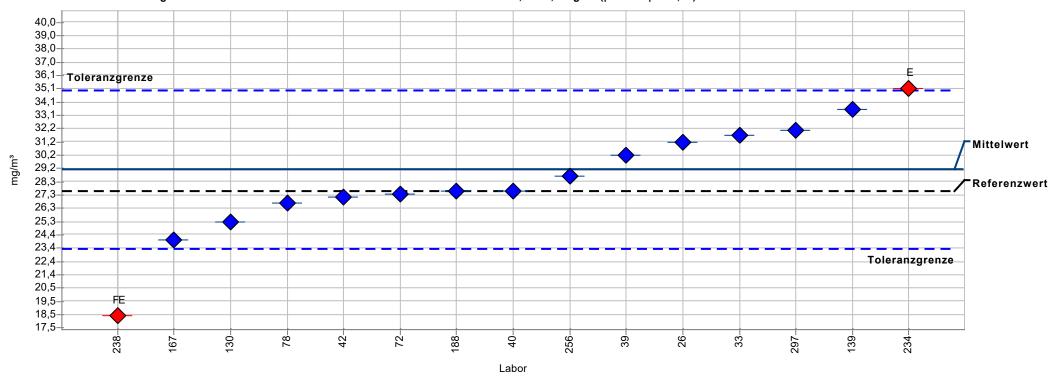

Rel. Vergleich-Stdabw.: 15,31%

Merkmal:1-Methoxy-2-PropanolMittelwert:68,2 mg/m³Probe:1Vgl.-Stdabw.:9,8 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 14,34%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 70,6 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 16 Toleranzbereich: 54,5 - 81,8 mg/m³ (|Z-Score| <= 2,00)

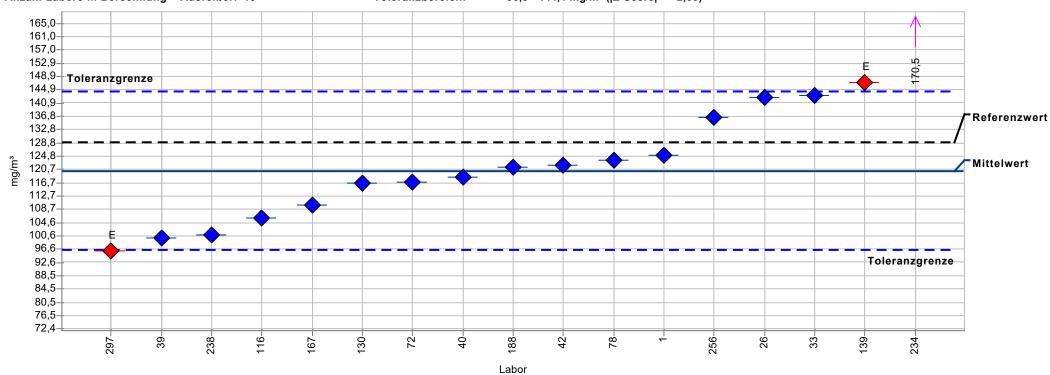

 Merkmal:
 1-Propanol
 Mittelwert:
 29,1 mg/m³

 Probe:
 1
 Vgl.-Stdabw.:
 3,2 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 11,05%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 27,6 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 14 Toleranzbereich: 23,3 - 35,0 mg/m³ (|Z-Score| <= 2,00)

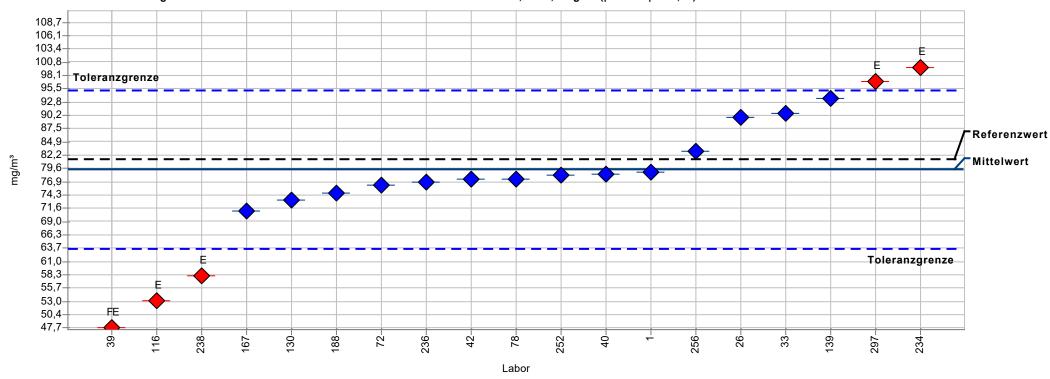

 Merkmal:
 2-Butanol
 Mittelwert:
 120,4 mg/m³

 Probe:
 1
 Vgl.-Stdabw.:
 15,8 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 13,13%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 129,1 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 16 Toleranzbereich: 96,3 - 144,4 mg/m³ (|Z-Score| <= 2,00)

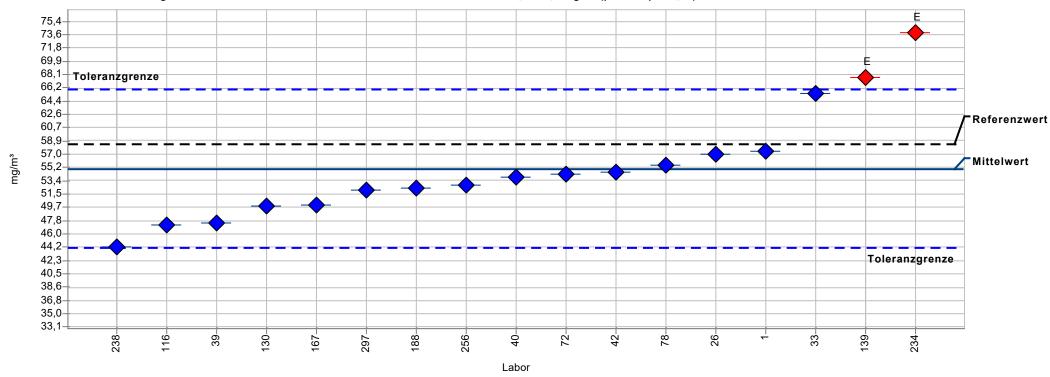

 Merkmal:
 2-Propanol
 Mittelwert:
 79,3 mg/m³

 Probe:
 1
 Vgl.-Stdabw.:
 12,0 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 15,16%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 81,5 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 18 Toleranzbereich: 63,5 - 95,2 mg/m³ (|Z-Score| <= 2,00)

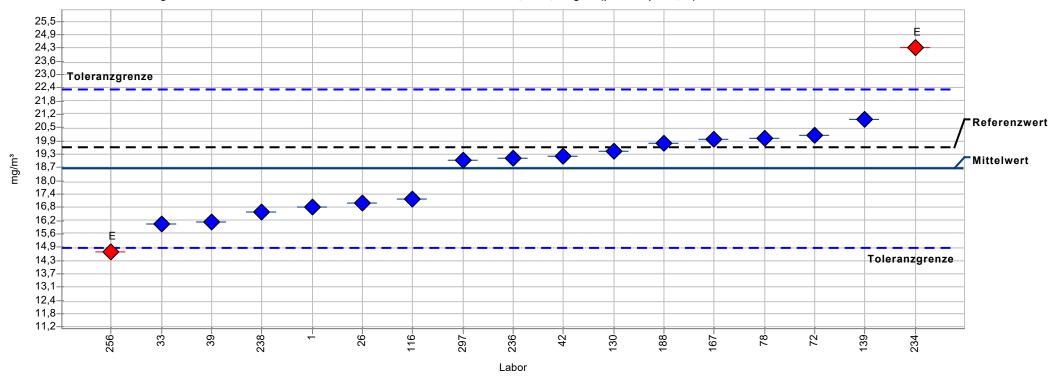


Merkmal:i-ButanolMittelwert:55,0 mg/m³Probe:1Vgl.-Stdabw.:7,7 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 13,94%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 58,4 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 17 Toleranzbereich: 44,0 - 66,0 mg/m³ (|Z-Score| <= 2,00)

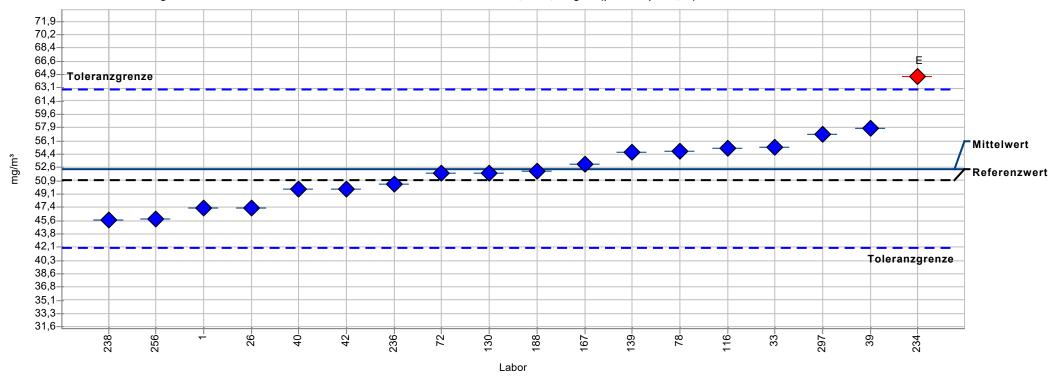


Merkmal:1,2,4-TrimethylbenzolMittelwert:18,6 mg/m³Probe:2Vgl.-Stdabw.:2,3 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 12,52%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 19,6 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 17 Toleranzbereich: 14,9 - 22,3 mg/m³ (|Z-Score| <= 2,00)

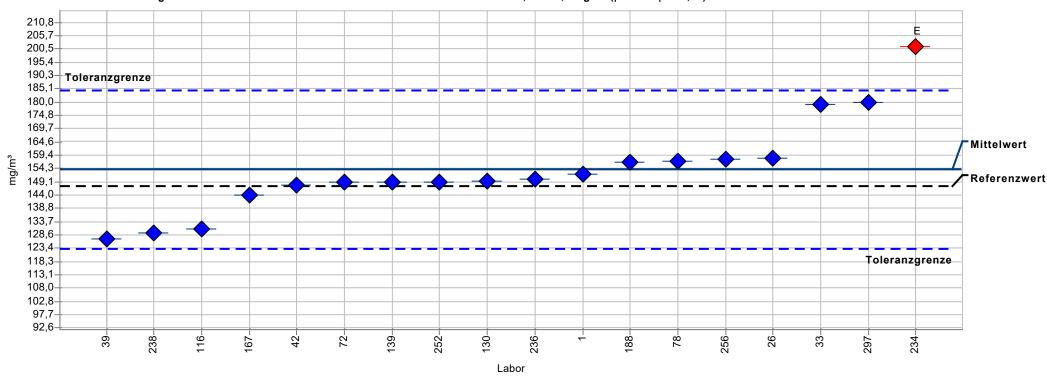

 Merkmal:
 Cumol
 Mittelwert:
 52,4 mg/m³

 Probe:
 2
 Vgl.-Stdabw.:
 4,8 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 9,06%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 50,9 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 18 Toleranzbereich: 42,0 - 62,9 mg/m³ (|Z-Score| <= 2,00)

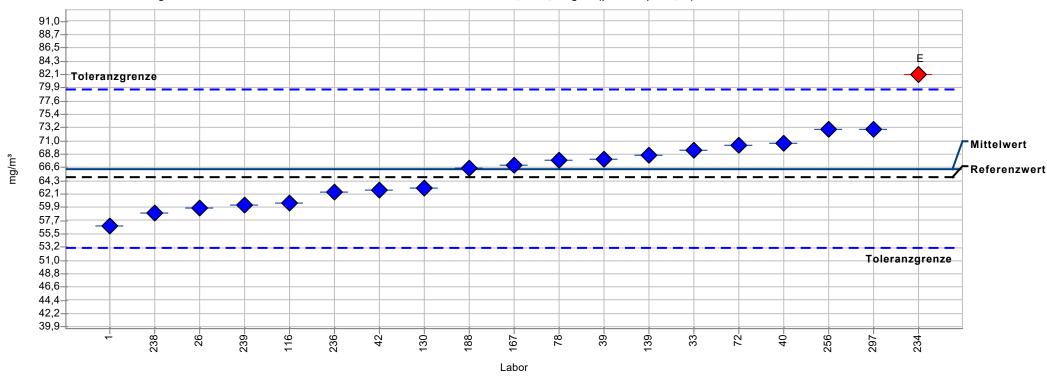


Merkmal:EthylacetatMittelwert:153,8 mg/m³Probe:2Vgl.-Stdabw.:18,4 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 11,93%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 147,6 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 18 Toleranzbereich: 123,0 - 184,5 mg/m³ (|Z-Score| <= 2,00)



Merkmal:EthylbenzolMittelwert:66,3 mg/m³Probe:2Vgl.-Stdabw.:6,2 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 9,34%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 64,9 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 19 Toleranzbereich: 53,1 - 79,6 mg/m³ (|Z-Score| <= 2,00)

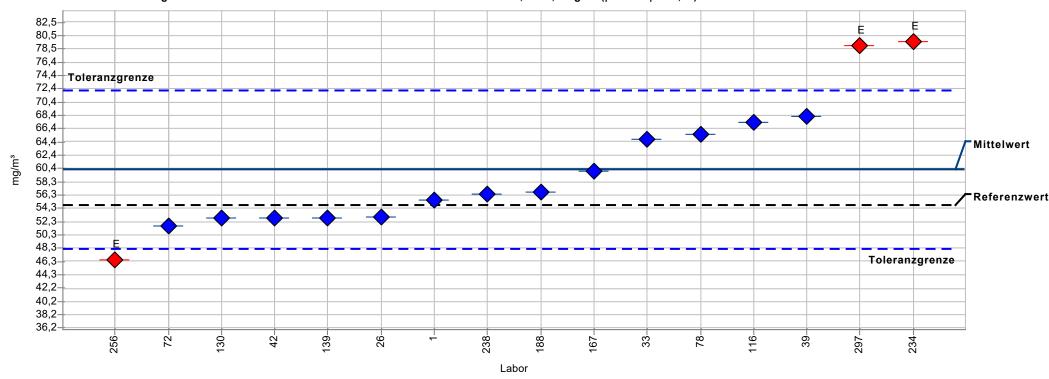
 Merkmal:
 m-Xylol
 Mittelwert:
 70,8 mg/m³

 Probe:
 2
 Vgl.-Stdabw.:
 7,1 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 10,00%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 71,0 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 18 Toleranzbereich: 56,6 - 85,0 mg/m³ (|Z-Score| <= 2,00)

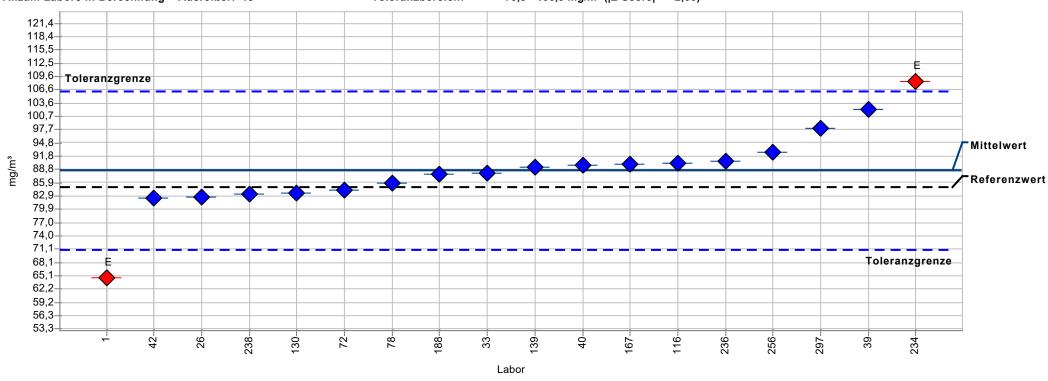

 Merkmal:
 n-Hexan
 Mittelwert:
 60,2 mg/m³

 Probe:
 2
 Vgl.-Stdabw.:
 9,7 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 16,14%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 54,8 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 16 Toleranzbereich: 48,1 - 72,2 mg/m³ (|Z-Score| <= 2,00)

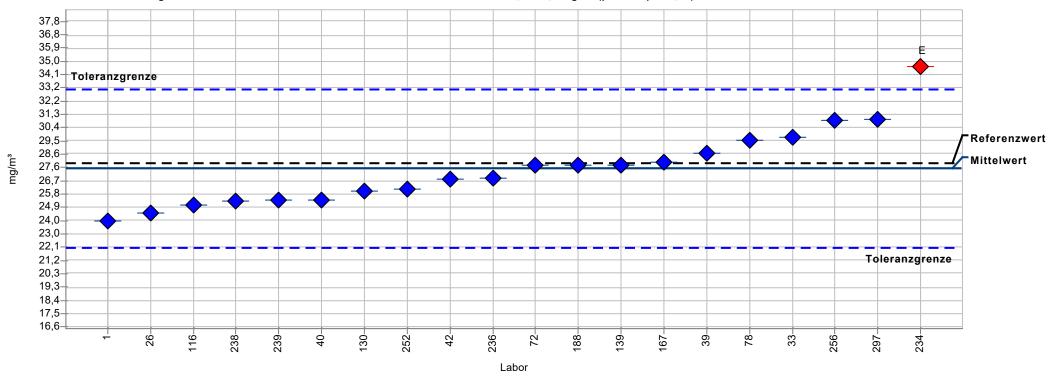

 Merkmal:
 n-Octan
 Mittelwert:
 88,6 mg/m³

 Probe:
 2
 Vgl.-Stdabw.:
 9,1 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 10,31%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 84,9 mg/m³

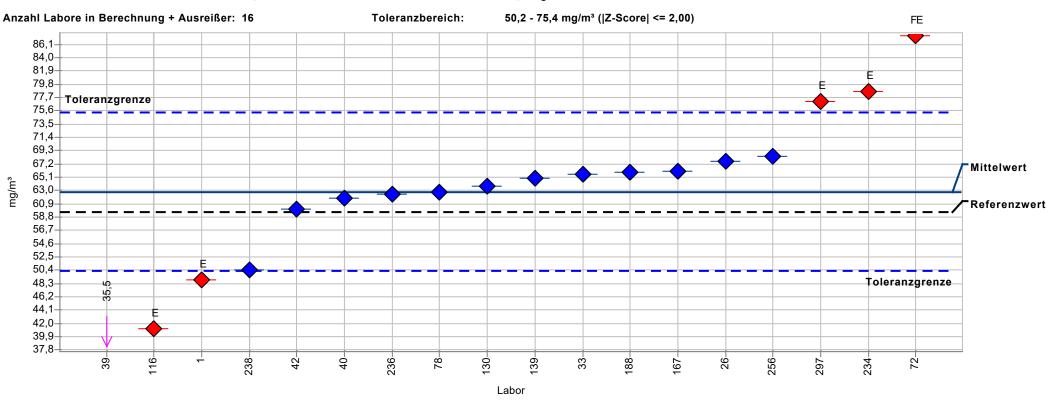
Anzahl Labore in Berechnung + Ausreißer: 18 Toleranzbereich: 70,8 - 106,3 mg/m³ (|Z-Score| <= 2,00)



Merkmal: Toluol Mittelwert: $27,5 \text{ mg/m}^3$ Probe: $2 \text{ Vgl.-Stdabw.:} 26 \text{ mg/m}^3$

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 9,56%

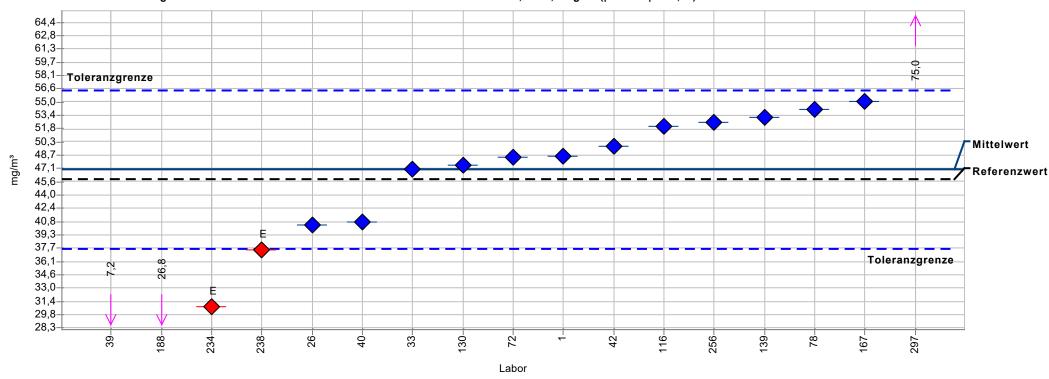
Rel. Soll-Stdabw.: 10,00% Referenzwert: 27,9 mg/m³


Anzahl Labore in Berechnung + Ausreißer: 20 Toleranzbereich: 22,0 - 33,1 mg/m³ (|Z-Score| <= 2,00)

Merkmal:4-Methyl-2-pentanonMittelwert:62,8 mg/m³Probe:3Vgl.-Stdabw.:9,5 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 15,20%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 59,5 mg/m³

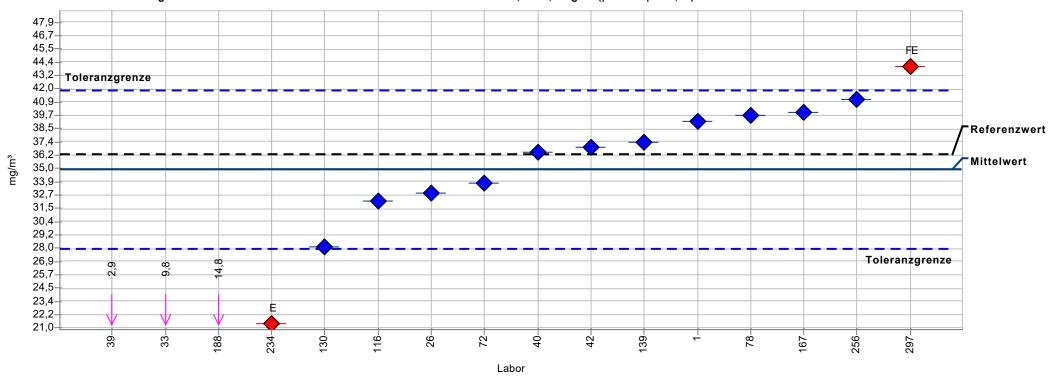


Merkmal:CyclohexanonMittelwert:47,0 mg/m³Probe:3Vgl.-Stdabw.:7,1 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 15,15%

Rel. Soll-Stdabw.: 10,00% Referenzwert: 45,9 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 14 Toleranzbereich: 37,6 - 56,4 mg/m³ (|Z-Score| <= 2,00)

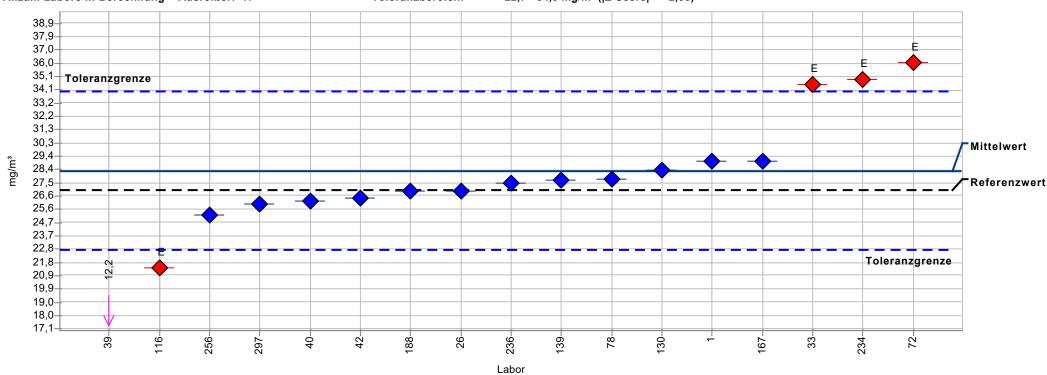


Merkmal:CyclopentanonMittelwert:34,9 mg/m³Probe:3Vgl.-Stdabw.:5,7 mg/m³

Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 16,40%

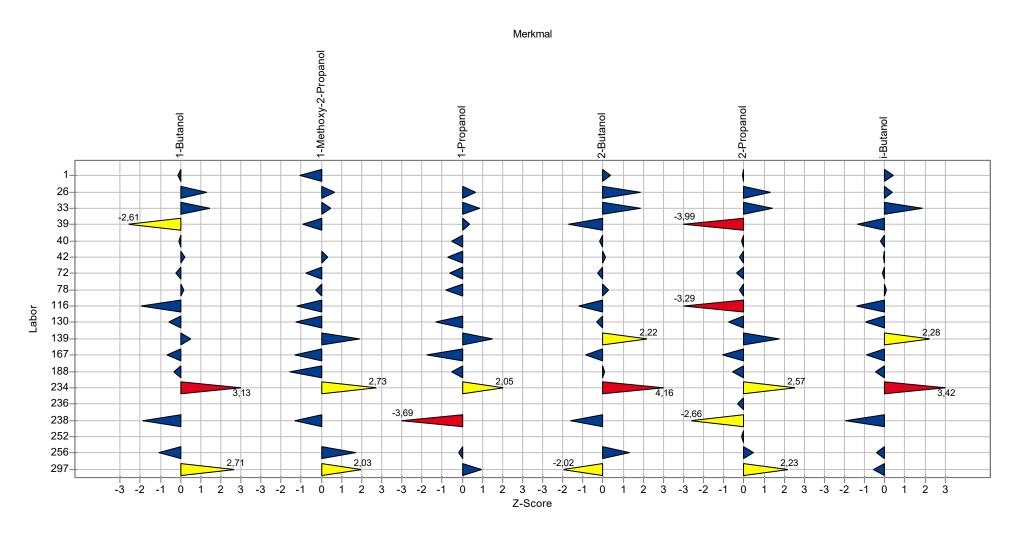
Rel. Soll-Stdabw.: 10,00% Referenzwert: 36,3 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 12 Toleranzbereich: 27,9 - 41,9 mg/m³ (|Z-Score| <= 2,00)

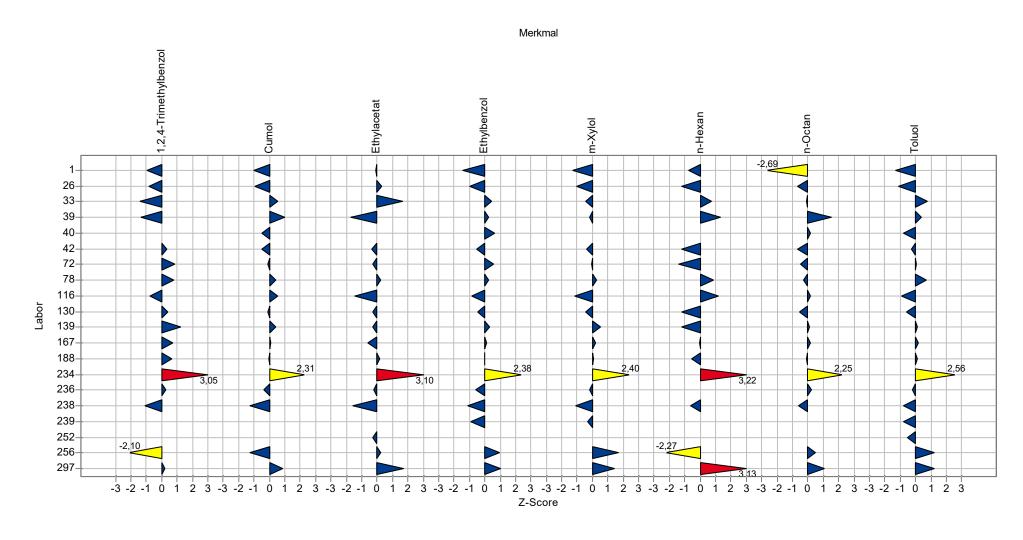

 Merkmal:
 Hexan-2-on
 Mittelwert:
 28,4 mg/m³

 Probe:
 3
 Vgl.-Stdabw.:
 3,8 mg/m³

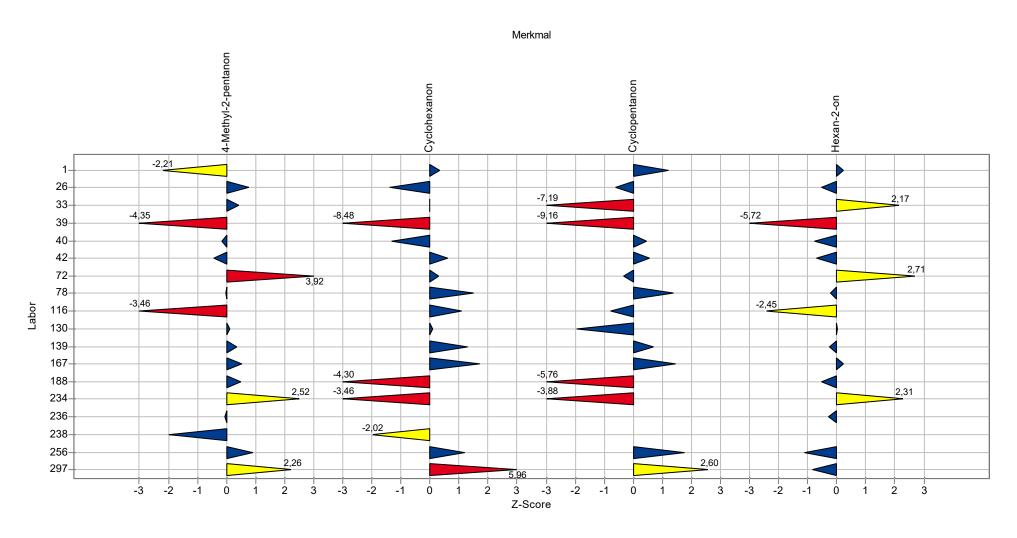
Methode: ISO 5725-2 Rel. Vergleich-Stdabw.: 13,47%


Rel. Soll-Stdabw.: 10,00% Referenzwert: 27,0 mg/m³

Anzahl Labore in Berechnung + Ausreißer: 17 Toleranzbereich: 22,7 - 34,0 mg/m³ (|Z-Score| <= 2,00)


Übersicht Z-Scores

Probe: 1


Übersicht Z-Scores

Probe: 2

Übersicht Z-Scores

Probe: 3

Fragen und Antworten

Teilnehmer	Probenträger
1	AK Typ BIA
26	Aktivkohle Typ BIA
33	Aktivkohle SKC 226-09, Tenax TA+Carbosiv+Aktivkohle
39	Aktivkohle Typ BIA
40	Kieselgel SKC, ArtNr. 226-15 (560mg/260mg), // (400 mg/200 mg), Aktivkohle Fa. SKC, Anasorb CSC, BestNr. 226-09
42	A-Kohle Typ B bzw . Silicagel Typ B
72	Aktivkohle Typ B
78	Probe 1/2 Aktivkohle Typ B/G // Probe 3 Silicagel Typ G
116	Aktivkohleröhrchen Typ B/G und Silikagelröhrchen
130	A-Kohle Typ BIA
139	Charcoal and silicagel tubes (DRAGER)
167	NIOSH Charcoal tubes for solvents and alcohols. BIA Silica Tubes for ketones.
188	Dräger Aktivkohleröhrchen Typ B
234	Röhrchen Dräger A-Kohle Typ B/G für alle drei Prüfgasgemische; Bei der Probe 3 w äre gemäß IFA-Arbeitsmappe 7708 Silikagel-Röhrchen zu nutzen
236	AK- und Tenax-Röhrchen
238	
239	
252	Dräger Aktivkohle Typ BIA
256	NIOSH (Prod. No. 64 00742) Fa. Dräger Safety
297	Für Ketone: Silicagel, Für Aromaten und Aliphaten: Aktivkohle; für Alkohole: Silicagel (außer 2-Propanol: hier Aktivkohle)

Teilnehmer	Probenahmepumpe	Volumenstrom	Volumenstrommessung
1	GSA 350 ex / SKC PCXR8	0,2 - 0,33 l/min	TSI 4146
26	Gilian LFS-113 DC	0,33	DryCal
33	SKC Universal-Luftprobennahmepumpe Typ 224	50-400 ml	Bios Defender 510
39	Gilian Air Plus	0,05 bis 0,4 L/min	Gilibriator 3
40	Gilson LFS-113DC	30mL/min // 40 mL/min	Drycal DC-Lite
42	Analyt-MTC	0,33 L/min und 0,08 L/min	Analyt 852
72	SG 350	333 ml/min	Defender 520 (50-5000 ml/min)
78	GilAir5 // SG5100ex // SG350ex // Gilian LFS113	ca. 0,333 L/min	Gilibrator 3
116	LfS 113	0,33 L/min	Bios Defender

Teilnehmer	Probenahmepumpe	Volumenstrom	Volumenstrommessung
130	LFS 113	0,33 l/min	Gilibrator
139	SKC sampling pump	0,33 l/min (charcoal tubes) and 0,083 l/min (silicagel tubes)	SKC flow meter
167	Analyt-MTC	0,033 L/min und 0,08 L/min	Analyt 852
188	SG4000, SG5200	etw a 20 I pro Stunde, w urde dokumentiert zur Berechnung	Gillibrator
234	Gillian GilAir Plus	0,08 L/min	TSI 4140
236	Gilian LFS-113	100 und 30 mL/min	MesaLabs Bios DryCal Definer 220
238	Analyt-MTC	0,033 L/min	Analyt 852
239	Analyt-MTC	0,033 L/min	Analyt 852
252	GilAir Plus, SG5200, SG5100ex	0,33 l/min	Gilian Gilbrator 3
256	Analyt-MTC	0,033 L/min	Analyt 852
297	BiVOC2	In der Regel 0,3 l/min und 0,8 l/min	

Teilnehmer	Probenahmedauer	Sammel-/Kontrollschicht getrennt	
1	1- 2 h	ja	
26	120 Min	nein	
33	60-120 Minuten	ja	
39	40 - 90 min	ja und ja	
40	ca. 115min und ca. 60 min	Nein	
42	120 min	nein	
72	60 min	Ja	
78	120	ja	
116	(30, 60, 90, 120) min	ja	
130	120 Minuten / 60 Minuten	ja	
139	120 min	the analysis was performed by an external laboratory	
167	120 min	Yes	
188	120 min	ja	
234	120 Minuten	ja	
236	30 - 60 min	(bei AK) ja	
238	120 min	Yes	
239	120 min		
252	120 min	ja	
256	120 min	nein	
297	In der Regeln ca. 2 h	Ja	

Teilnehmer	Analysenmethode IFA-Arbeitsmappe		
1			
26	BIA 6386 (1997-04) / BIA 8415 (1997-04) / BIA 6385 (1997-04) / IFA 7732 (2011-11) / BGIA 7733 (2005-04) / BGIA 7708 (2005-04) / BGIA 7322 (2009-05)		
33	Hausmethode SOP M110, SOP M 100		
39	Aliphaten: NIOSH 1500; Aromaten: NIOSH 1501; Ethylacetat: NIOSH 1450; 2-Propanol: NIOSH 1400; 1-,2-,i-Butanol: NIOSH 1401; 1-Methoxy-2-propanol: NIOSH 2554; Ketone: NIOSH 2555		
40	DFG-Methode Lösemittelgemische Nr. 3 // DFG-Methode Lösemittelgemische Nr. 5 // Hausmethode		
42	IFA-Arbeitsmappe 7322; 7708; 7732		
72	validierte eigene SOP in Anlehnung an IFA Arbeitsmappe		
78	IFA 7732/7733		
116	Aliphaten: NIOSH 1500 (2003); Aromaten: NIOSH 1501 (2003); Ethylacetat: NIOSH 1450 (2003); 2-Propanol: NIOSH 1400 (1994); 1-,2-,i-Butanol: NIOSH 1401 (1994), 1-Methoxy-2-		
130	propanol: NIOSH 2554 (200 DFG-Luftanalysenband 1 2013-10		
139	NIOSH 1500, NIOSH 1501, IFA 7322, NIOSH 1400, NIOSH 1401, IFA 7569, IFA 7708		
167	Internal method for solvents and alcohols. IFA Folder 7708 for ketones.		
188	NIOSH 1400 1994, IFA 7733 2005, IFA 7732 2011 und NIOSH 2554 2003		
234	BGIA-Methode 7732/7733; BGIA-Methode 7569; BGIA-Methode 7708		
236	DFG-Methoden Lösemittelgemische 2 & 6		
238	NF X 43-267		
252	Hausinterne Methode		
256	VDI 2100 Blatt2		
297	VDI 2100 Bl. 2, 2010-11, modifiziert, GC-MS		

Teilnehmer	Desorptionslösung	
1	ternäres Gemisch	
26	ternäres Gemisch (TG1): CH2Cl2:CS2:CH3OH=60%:30%:10%	
33	Benzylalkohol, Thermodesorption	
39	Schw efelkohlenstoff; Schw efelkohlenstoff + 1% 2-Butanol; Schw efelkohlenstoff + 1% 2-Propanol; 85% 1- Dichlormethan + 15% Methanol;	
40	Dichlormethan/Methanol/Wasser 65/33/2 (v/v) // Wasser // N,N-Dimethylformamid/Benzylalkohol (4+1 v/v)	
42	ternäres Gemisch für AK35 bzw . Keton-TG für AK60 (nach MGU-Standardverfahren)	
72	Benzylalkohol	
78	ternäres Gemisch Dichlormethan 60 : Schw efelkohlenstoff 35 : Methanol 5	
116	Aliphaten/Aromaten/Ethylacetat/Ketone: Schw efelkohlenstoff 2-Propanol: Schw efelkohlenstoff + 1% 2-Butanol 1-,2-,i-Butanol: Schw efelkohlenstoff + 1% 2-Propanol 1-Methoxy-2-propanol: Dichlormethan/Metha	
130	Ternärem Gemisch	
139	the analysis was performed by an external laboratory	
167	CS2 for solvents and alcohols. DCM:MeOH:H2O 65:33:2 for ketones.	

Teilnehmer	Desorptionslösung	
234	Tenäres Gemisch aus 60% DCM / 35% CS2 / 5% MeOH) für 18h im Kühlschrank desorbiert	
236	(bei AK) CS2 mit 2-Butanol	
238	CS2 for sample 2 ans Dichloromethane + CS2 for sample 1 and 3	
252	DMF:CS2 (60/40)	
256	Diethylether und CS2	

Teilnehmer	Desorptionsvolumen	Gaschromatograph (GC)
1	Messzone: 1 ml, Durchbruchszone: 2 ml	GC 3800 (Varian)
26	5 ml	Agilent 7890A
33	1 ml	PE-HS, PE-ATD
39	Messzone: 2 ml, Durchbruchszone: 1 ml	GC 3800 (Varian)
40	5 mL // 10 mL // 5 mL	8890 // 7890
42	10 ml	Agilent 7890A
72	5 ml	GC-FID HP 7890b
78	20	Clarus590 Perkin Elmer
116	Messzone: 1 ml, Durchbruchszone: 2 ml	GC 3800 (Varian)
130	4,0 ml je Phase	Kapillar GC-FID
139	the analysis was performed by an external laboratory	the analysis was performed by an external laboratory
167	1,5 mL for solvents and alcohols. 5 mL for ketones.	Agilent 7890N / Agilent 6890N
234	10	nicht bekannt
236	(bei AK) 2 mL	Agilent 7890A und 8890
238	2 mL	Sample 2 and 3 : GC-MS ans Sample 1 : GC-FID
252	5 ml	Shimadzu GC 2010Plus
256	2x 5 mL	Agilent Technologies 7890B

Teilnehmer	Trägergas	Probeninjektion
1	Helium	Split/splitless
26	Helium	split
33	Helium	Headspace (Splitless), Thermodesorption (split)
39	Helium	split/splitless
40	Helium	Split
42	Helium	split
72	Helium 6.0	split

Teilnehmer	Trägergas	Probeninjektion
78	Helium	split
116	Helium	Split/splitless
130	Stickstoff	Split-Injektor
139	the analysis was performed by an external laboratory	the analysis was performed by an external laboratory
167	Helium (Agilent 7890N), Nitrogen (Agilent 6890N)	Splitless (Agilent 7890N), On column (Agilent 6890N)
234	nicht bekannt	nicht bekannt
236	He	split
238	Hydrogen	Split
252	Helium	Split
256	Helium	splitlos
Teilnehmer	Trennsäule	
1	RTX Volatiles (L = 60 m, ID = 0,25 mm, FD = 1 μm)	
26	DB Wax UI UA2232723H	
33	DB-VRX	
39	RTX Volatiles (L = 60 m, ID = 0,25 mm, FD = 1 μ m)	
40	HP-5ms, Länge 30 m; Innendurchmesser 0,25 mm; Filmdicke 0,25 μm // RXI-5ms	
42	HP FFAP / HP Ultra 2 (je 50 m; 0,32 mm, 0,52 μm), parallel	
72	Phenomenex Zebron ZB-WAX,	
78	DB1 // Rxi-624 SilMS	
116	RTX Volatiles (L = 60 m, ID = 0,25 mm, FD = 1 µm)	
130	Phenomenex ZB-5 (60 m x 0,32 mm x 1,0 μm)	
139	the analysis was performed by an external laboratory	
167	Agilent DB 624 30m, 0,25mm id, 1,4 µm (Agilent 7890N), Rest	ek Porapak PS 80/20 2m, 2mm id (Agilent 6890N)
234	DB-5ms (60 m * 0,25 mm; 0,25 μm) DB-WAX UI (30 m * 0,25 μm)	mm; 0,25 μm)
236	DB-624 und HP-5MS	
238	DB624	
252	Rxi-5Sil MS	
256	RTx-624, 40 m, 0.18 mm ID, 1 ul Film thickness	
Teilnehmer	Detektor	
1	Massenspektrometer (MS)	
26	MSD Agilent 5975C	

Teilnehmer	Detektor	
33	FID/MS	
39	Massenspektrometer (MS)	
40	5977B	
42	FID / FID	
72	FID	
78	FID	
116	Massenspektrometer (MS)	
130	FID, 250 °C	
139	the analysis was performed by an external laboratory	
167	FID	
234	nicht bekannt	
236	FID und MS	
238	Sample 2 and 3 : GC-MS and Sample 1 : GC-FID	
252	FID	
256	MSD	

Teilnehmer	Auswertung	
1	Interner Standard	
26	Quantifizierung: Durch eine Kalibrierung von Standards mit verschiedenen Stufen gegen Anw esenheit von internem Standard. Identifizierung: Durch die Massen von Analyten mittels Massenspektrometer	
33	externer Standard	
39	Interner Standard	
40	Internes Standard Verfahren	
42	interner Standard; Identifizierung: GC-FID und GC-MS	
72	externer Standard, 6 Pkt. Kalibrierung	
78	interner Standard	
116	Interner Standard	
130	Externe Mehrpunktkalibrierung	
139	the analysis was performed by an external laboratory	
167	Internal Standard	
234	interner Standard	
236	externer Standard	
238	Internal	
252	Interner Standard	

Teilnehmer	Auswertung	
256	Interner Standard	
Teilnehmer	Wiederfindungsraten	Datum der Analyse
1	Nein	0411.03.2024
26	nein	06. und 12.03.2024
33	ja	29.02.24
39	Nein	0411.03.2024
40	ja	27.02.2024 & 28.02.2024
42	ja	Aufarbeitung 26.02.24 , Analyse 27.02.24
72	ja (0,90 bis 0,98)	bis 04.03.2024
78	nein	alles außer Ethylacetat/n-Hexan 23.02.2024 - Ethylacetat/n-Hexan 27.02.2024
116	Nein	0411.03.2024
130	nein	siehe oben
139	the analysis was performed by an external laboratory	the analysis was performed by an external laboratory
167	No	Betw een 20/3 - 4/9 2024
234	nicht bekannt	20.03. Datum vom Bericht, genaues Analysedatum nicht bekannt
236	ja	29.02.2024
238	No	26/02/2024
252	Nein	19.03.2024
256	ja	27.02.2024
297		25.03.2024