Ringversuche für Gefahrstoffmessstellen

Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA)

B. Maybaum, K. Gusbeth, Dr. D. Breuer
Alte Heerstraße 111, 53757 Sankt Augustin
Ringversuche@dguv.de, +49 2241 231 2549

Ergebnismitteilung

Ringversuch Aldehyde 2014
Zusammenfassung Labormittelwerte

Probe 1

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Formaldehyd Z-Score</th>
<th>Acetaldehyd Z-Score</th>
<th>Propionaldehyd Z-Score</th>
<th>Butyraldehyd Z-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,161 -0,24</td>
<td>0,514 0,56</td>
<td>0,464 -0,77</td>
<td>0,608 0,46</td>
</tr>
<tr>
<td>22</td>
<td>0,171 0,37</td>
<td>0,492 0,11</td>
<td>0,518 0,31</td>
<td>0,588 0,12</td>
</tr>
<tr>
<td>28</td>
<td>0,158 -0,42</td>
<td>0,457 -0,62</td>
<td>0,461 -0,83</td>
<td>0,530 -0,88</td>
</tr>
<tr>
<td>29</td>
<td>0,179 0,85</td>
<td>0,515 0,58</td>
<td>0,546 0,87</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,169 0,25</td>
<td>0,501 0,29</td>
<td>0,547 0,89</td>
<td>0,585 0,07</td>
</tr>
<tr>
<td>42</td>
<td>0,181 0,97</td>
<td>0,537 1,03</td>
<td>0,555 1,05</td>
<td>0,643 1,07</td>
</tr>
<tr>
<td>45</td>
<td>0,164 -0,06</td>
<td>0,488 0,02</td>
<td>0,511 0,17</td>
<td>0,721 2,41 E</td>
</tr>
<tr>
<td>55</td>
<td>0,211 2,79 BE</td>
<td>0,493 0,13</td>
<td>0,493 -0,19</td>
<td>0,583 0,03</td>
</tr>
<tr>
<td>56</td>
<td>0,150 -0,91</td>
<td>0,420 -1,37</td>
<td>0,430 -1,44</td>
<td>0,490 -1,57</td>
</tr>
<tr>
<td>58</td>
<td>0,165 0,02</td>
<td>0,499 0,25</td>
<td>0,523 0,42</td>
<td>0,596 0,25</td>
</tr>
<tr>
<td>60</td>
<td>0,168 0,19</td>
<td>0,530 0,89</td>
<td>0,602 1,98</td>
<td>0,559 -0,38</td>
</tr>
<tr>
<td>62</td>
<td>0,160 -0,30</td>
<td>0,500 0,27</td>
<td>0,480 -0,45</td>
<td>0,550 -0,53</td>
</tr>
<tr>
<td>121</td>
<td>0,160 -0,30</td>
<td>0,430 -1,17</td>
<td>0,480 -0,45</td>
<td>0,630 0,84</td>
</tr>
<tr>
<td>123</td>
<td>0,187 1,34</td>
<td>0,559 1,48</td>
<td>0,565 1,25</td>
<td>0,608 0,46</td>
</tr>
<tr>
<td>153</td>
<td>0,188 1,40</td>
<td>0,527 0,83</td>
<td>0,538 0,71</td>
<td>0,634 0,91</td>
</tr>
<tr>
<td>155</td>
<td>0,157 -0,48</td>
<td>0,484 -0,06</td>
<td>0,514 0,23</td>
<td>0,597 0,27</td>
</tr>
<tr>
<td>165</td>
<td>0,163 -0,12</td>
<td>0,496 0,19</td>
<td>0,520 0,35</td>
<td>0,658 1,32</td>
</tr>
<tr>
<td>167</td>
<td>0,153 -0,72</td>
<td>0,476 -0,22</td>
<td>0,511 0,17</td>
<td>0,576 -0,09</td>
</tr>
<tr>
<td>174</td>
<td>0,160 -0,30</td>
<td>0,503 0,33</td>
<td>0,525 0,45</td>
<td>0,658 1,32</td>
</tr>
<tr>
<td>186</td>
<td>0,173 0,49</td>
<td>0,515 0,58</td>
<td>0,555 1,05</td>
<td>0,633 0,89</td>
</tr>
<tr>
<td>191</td>
<td>0,170 0,31</td>
<td>0,515 0,58</td>
<td>0,543 0,81</td>
<td>0,619 0,65</td>
</tr>
<tr>
<td>195</td>
<td>0,162 -0,18</td>
<td>0,465 -0,45</td>
<td>0,518 0,31</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>0,150 -0,91</td>
<td>0,434 -1,09</td>
<td>0,418 -1,68</td>
<td>0,456 -2,15 E</td>
</tr>
<tr>
<td>207</td>
<td>0,164 -0,06</td>
<td>0,498 0,23</td>
<td>0,527 0,49</td>
<td>0,577 -0,07</td>
</tr>
<tr>
<td>219</td>
<td>0,165 0,00</td>
<td>0,503 0,33</td>
<td>0,521 0,37</td>
<td>0,611 0,51</td>
</tr>
<tr>
<td>228</td>
<td>0,140 -1,51</td>
<td>0,420 -1,37</td>
<td>0,440 -1,24</td>
<td>0,450 -2,26 E</td>
</tr>
<tr>
<td>230</td>
<td>0,179 0,85</td>
<td>0,467 -0,41</td>
<td>0,487 -0,31</td>
<td>0,554 -0,47</td>
</tr>
<tr>
<td>231</td>
<td>0,162 -0,19</td>
<td>0,470 -0,35</td>
<td>0,437 -1,30</td>
<td>0,543 -0,66</td>
</tr>
<tr>
<td></td>
<td>Formaldehyd</td>
<td>Z-Score</td>
<td>Acetaldehyd</td>
<td>Z-Score</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>241</td>
<td>0,150</td>
<td>-0,91</td>
<td>0,450</td>
<td>-0,76</td>
</tr>
<tr>
<td>260</td>
<td>0,160</td>
<td>-0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>0,183</td>
<td>1,09</td>
<td>0,493</td>
<td>0,13</td>
</tr>
<tr>
<td>264</td>
<td>0,170</td>
<td>0,31</td>
<td>0,480</td>
<td>-0,14</td>
</tr>
<tr>
<td>265</td>
<td>0,145</td>
<td>-1,22</td>
<td>0,405</td>
<td>-1,69</td>
</tr>
<tr>
<td>267</td>
<td>0,172</td>
<td>0,43</td>
<td>0,509</td>
<td>0,46</td>
</tr>
<tr>
<td>275</td>
<td></td>
<td></td>
<td>0,500</td>
<td>0,27</td>
</tr>
<tr>
<td>281</td>
<td>0,170</td>
<td>0,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>0,169</td>
<td>0,25</td>
<td>0,492</td>
<td>0,11</td>
</tr>
<tr>
<td>502</td>
<td>0,160</td>
<td>-0,30</td>
<td>0,490</td>
<td>0,07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung</td>
<td>[Z]<=2,00</td>
<td>[Z]<=2,00</td>
<td>[Z]<=2,00</td>
<td>[Z]<=2,00</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,165</td>
<td>0,487</td>
<td>0,502</td>
<td>0,581</td>
</tr>
<tr>
<td>Vergleich-Stdabw.</td>
<td>0,011</td>
<td>0,035</td>
<td>0,049</td>
<td>0,060</td>
</tr>
<tr>
<td>Rel. Vergleich-Stdabw.</td>
<td>6,78 %</td>
<td>7,09 %</td>
<td>9,79 %</td>
<td>10,38 %</td>
</tr>
<tr>
<td>Referenzwert</td>
<td>0,160</td>
<td>0,470</td>
<td>0,519</td>
<td>0,601</td>
</tr>
<tr>
<td>Soll-Stdabw.</td>
<td>0,016</td>
<td>0,049</td>
<td>0,050</td>
<td>0,058</td>
</tr>
<tr>
<td>Rel. Soll-Stdabw.</td>
<td>10,00 %</td>
<td>10,00 %</td>
<td>10,00 %</td>
<td>10,00 %</td>
</tr>
<tr>
<td>unt. Toleranzgr.</td>
<td>0,132</td>
<td>0,389</td>
<td>0,402</td>
<td>0,465</td>
</tr>
<tr>
<td>ob. Toleranzgr.</td>
<td>0,198</td>
<td>0,584</td>
<td>0,603</td>
<td>0,697</td>
</tr>
<tr>
<td>Anzahl B-Ausreißer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl F-Ausreißer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl der Labore, die Ergebnisse vorgelegt haben</td>
<td>37</td>
<td>36</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>Anzahl teilnehmender Labore, nach der Eliminierung der Ausreißer A-D und F (ohne Labore, die keine Messwerte, sondern nur einen Status angegeben haben)</td>
<td>36</td>
<td>36</td>
<td>33</td>
<td>31</td>
</tr>
</tbody>
</table>

Erläuterung der Ausreißertypen
A: Einzelausreißer
Grubbs
<table>
<thead>
<tr>
<th></th>
<th>Formaldehyd Z-Score</th>
<th>Acetaldehyd Z-Score</th>
<th>Propionaldehyd Z-Score</th>
<th>Butyraldehyd Z-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>B: abw. Labormittelwert</td>
<td>Grubbs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C: überh. Labor-Stdabw.</td>
<td></td>
<td>Cochran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: manuell entfernt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E: Score außerhalb Tol.-Bereich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zusammenfassung Labormittelwerte

Probe 2

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Formaldehyd</th>
<th>Propionaldehyd</th>
<th>Butyraldehyd</th>
<th>Z-Score</th>
<th>Z-Score</th>
<th>Z-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/m³</td>
<td>mg/m³</td>
<td>mg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,116</td>
<td>0,925</td>
<td>1,030</td>
<td>0,07</td>
<td>-0,81</td>
<td>0,38</td>
</tr>
<tr>
<td>22</td>
<td>0,121</td>
<td>1,034</td>
<td>1,027</td>
<td>0,50</td>
<td>0,28</td>
<td>0,35</td>
</tr>
<tr>
<td>28</td>
<td>0,113</td>
<td>0,936</td>
<td>0,926</td>
<td>-0,20</td>
<td>-0,70</td>
<td>-0,67</td>
</tr>
<tr>
<td>29</td>
<td>0,117</td>
<td>1,049</td>
<td>1,021</td>
<td>0,15</td>
<td>0,42</td>
<td>0,29</td>
</tr>
<tr>
<td>30</td>
<td>0,116</td>
<td>1,079</td>
<td>1,021</td>
<td>0,07</td>
<td>0,72</td>
<td>0,29</td>
</tr>
<tr>
<td>42</td>
<td>0,127</td>
<td>1,110</td>
<td>1,103</td>
<td>1,02</td>
<td>1,03</td>
<td>1,11</td>
</tr>
<tr>
<td>45</td>
<td>0,116</td>
<td>1,030</td>
<td>1,269</td>
<td>0,07</td>
<td>0,24</td>
<td>2,79E</td>
</tr>
<tr>
<td>55</td>
<td>0,146</td>
<td>0,974</td>
<td>0,974</td>
<td>2,67E</td>
<td>-0,32</td>
<td>-0,19</td>
</tr>
<tr>
<td>56</td>
<td>0,110</td>
<td>0,970</td>
<td>0,960</td>
<td>-0,46</td>
<td>-0,36</td>
<td>-0,33</td>
</tr>
<tr>
<td>58</td>
<td>0,116</td>
<td>1,028</td>
<td>1,012</td>
<td>0,05</td>
<td>0,22</td>
<td>0,19</td>
</tr>
<tr>
<td>60</td>
<td>0,116</td>
<td>1,200</td>
<td>1,000</td>
<td>0,07</td>
<td>1,92</td>
<td>0,07</td>
</tr>
<tr>
<td>62</td>
<td>0,120</td>
<td>0,950</td>
<td>0,940</td>
<td>0,41</td>
<td>-0,56</td>
<td>-0,53</td>
</tr>
<tr>
<td>121</td>
<td>0,110</td>
<td>0,970</td>
<td>1,100</td>
<td>-0,46</td>
<td>-0,36</td>
<td>1,08</td>
</tr>
<tr>
<td>123</td>
<td>0,138</td>
<td>1,075</td>
<td>1,053</td>
<td>1,97</td>
<td>0,68</td>
<td>0,61</td>
</tr>
<tr>
<td>153</td>
<td>0,124</td>
<td>0,999</td>
<td>1,023</td>
<td>0,76</td>
<td>-0,07</td>
<td>0,31</td>
</tr>
<tr>
<td>155</td>
<td>0,108</td>
<td>1,015</td>
<td>1,018</td>
<td>-0,63</td>
<td>0,09</td>
<td>0,26</td>
</tr>
<tr>
<td>165</td>
<td>0,113</td>
<td>1,041</td>
<td>1,150</td>
<td>-0,20</td>
<td>0,34</td>
<td>1,59</td>
</tr>
<tr>
<td>167</td>
<td>0,108</td>
<td>1,018</td>
<td>0,985</td>
<td>-0,63</td>
<td>0,12</td>
<td>-0,08</td>
</tr>
<tr>
<td>174</td>
<td>0,107</td>
<td>1,007</td>
<td>0,975</td>
<td>-0,72</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>0,120</td>
<td>1,109</td>
<td>1,104</td>
<td>0,41</td>
<td>1,02</td>
<td>1,12</td>
</tr>
<tr>
<td>191</td>
<td>0,112</td>
<td>0,999</td>
<td>0,999</td>
<td>-0,28</td>
<td>-0,07</td>
<td>0,06</td>
</tr>
<tr>
<td>195</td>
<td>0,109</td>
<td>1,018</td>
<td>0,965</td>
<td>-0,54</td>
<td>0,12</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>0,105</td>
<td>0,845</td>
<td>0,796</td>
<td>-0,89</td>
<td>-1,60</td>
<td>-1,98</td>
</tr>
<tr>
<td>207</td>
<td>0,114</td>
<td>1,052</td>
<td>0,997</td>
<td>-0,11</td>
<td>0,45</td>
<td>0,04</td>
</tr>
<tr>
<td>219</td>
<td>0,112</td>
<td>1,017</td>
<td>0,926</td>
<td>-0,28</td>
<td>0,11</td>
<td>0,45</td>
</tr>
<tr>
<td>228</td>
<td>0,094</td>
<td>0,840</td>
<td>0,750</td>
<td>-1,84</td>
<td>-1,65</td>
<td>-2,44E</td>
</tr>
<tr>
<td>230</td>
<td>0,131</td>
<td>0,949</td>
<td>0,926</td>
<td>1,37</td>
<td>-0,57</td>
<td>-0,67</td>
</tr>
<tr>
<td>231</td>
<td>0,114</td>
<td>0,891</td>
<td>0,965</td>
<td>-0,14</td>
<td>-1,15</td>
<td>-0,27</td>
</tr>
<tr>
<td></td>
<td>Formaldehyd Z-Score</td>
<td>Propionaldehyd Z-Score</td>
<td>Butyraldehyd Z-Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>0,105</td>
<td>-0,89</td>
<td>0,880</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>0,110</td>
<td>-0,46</td>
<td>0,980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>0,124</td>
<td>0,76</td>
<td>1,051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>0,120</td>
<td>0,41</td>
<td>0,940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>0,085</td>
<td>-2,62 E</td>
<td>0,716</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>0,118</td>
<td>0,24</td>
<td>1,049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>0,117</td>
<td>0,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0,114</td>
<td>-0,11</td>
<td>0,997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>0,119</td>
<td>0,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>0,115</td>
<td>-0,02</td>
<td>0,993</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Z]<2,00</td>
<td>[Z]<2,00</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,115</td>
<td>1,006</td>
<td>0,993</td>
</tr>
<tr>
<td>Vergleich-Stdabw.</td>
<td>0,010</td>
<td>0,076</td>
<td>0,109</td>
</tr>
<tr>
<td>Rel. Vergleich-Stdabw.</td>
<td>9,07 %</td>
<td>7,59 %</td>
<td>10,94 %</td>
</tr>
<tr>
<td>Referenzwert</td>
<td>0,113</td>
<td>1,040</td>
<td>1,050</td>
</tr>
<tr>
<td>Soll-Stdabw.</td>
<td>0,012</td>
<td>0,101</td>
<td>0,099</td>
</tr>
<tr>
<td>Rel. Soll-Stdabw.</td>
<td>10,00 %</td>
<td>10,00 %</td>
<td>10,00 %</td>
</tr>
<tr>
<td>unt. Toleranzgr.</td>
<td>0,092</td>
<td>0,805</td>
<td>0,794</td>
</tr>
<tr>
<td>ob. Toleranzgr.</td>
<td>0,138</td>
<td>1,208</td>
<td>1,191</td>
</tr>
<tr>
<td>Anzahl B-Ausreißer</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl F-Ausreißer</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl der Labore, die Ergebnisse vorgelegt haben</td>
<td>38</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>Anzahl teilnehmender Labore, nach der Eliminierung der Ausreißer A-D und F (ohne Labore, die keine Messwerte, sondern nur einen Status angegeben haben)</td>
<td>38</td>
<td>34</td>
<td>32</td>
</tr>
</tbody>
</table>

Erläuterung der Ausreißertypen

A: Einzelausreißer
Grubbs
<table>
<thead>
<tr>
<th>B: abw. Labormittelwert</th>
<th>Grubbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>C: überh. Labor-Stdabw.</td>
<td>Cochran</td>
</tr>
<tr>
<td>D: manuell entfernt</td>
<td></td>
</tr>
<tr>
<td>E: Score außerhalb Tol.-Bereich</td>
<td></td>
</tr>
<tr>
<td>F:</td>
<td>Score</td>
</tr>
</tbody>
</table>
Zusammenfassung Labormittelwerte

Probe 3

<table>
<thead>
<tr>
<th>Einheit</th>
<th>Formaldehyd (mg/m³)</th>
<th>Propionaldehyd (mg/m³)</th>
<th>Butyraldehyd (mg/m³)</th>
<th>Z-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,053 -0,30</td>
<td>0,220 -0,77</td>
<td>0,376 0,81</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0,057 0,49</td>
<td>0,241 0,11</td>
<td>0,345 -0,08</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0,051 -0,67</td>
<td>0,215 -0,98</td>
<td>0,311 -1,05</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0,057 0,49</td>
<td>0,239 0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,056 0,30</td>
<td>0,269 1,28</td>
<td>0,364 0,46</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0,063 1,59</td>
<td>0,273 1,45</td>
<td>0,397 1,41</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0,066 0,30</td>
<td>0,242 0,15</td>
<td>0,433 2,45 E</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0,078 4,35 BE</td>
<td>0,252 0,57</td>
<td>0,366 0,52</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>0,060 1,04</td>
<td>0,240 0,07</td>
<td>0,340 -0,23</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0,059 0,87</td>
<td>0,246 0,32</td>
<td>0,357 0,25</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0,055 0,12</td>
<td>0,284 1,91</td>
<td>0,315 -0,95</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>0,050 -0,80</td>
<td>0,210 -1,19</td>
<td>0,310 -1,09</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>0,050 -0,80</td>
<td>0,230 -0,35</td>
<td>0,380 0,92</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0,056 0,30</td>
<td>0,259 0,87</td>
<td>0,364 0,46</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>0,063 1,59</td>
<td>0,255 0,70</td>
<td>0,381 0,95</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>0,056 0,30</td>
<td>0,251 0,53</td>
<td>0,367 0,55</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>0,052 -0,43</td>
<td>0,284 1,91</td>
<td>0,387 1,12</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>0,054 -0,06</td>
<td>0,246 0,32</td>
<td>0,352 0,12</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>0,053 -0,25</td>
<td>0,242 0,15</td>
<td>0,357 0,26</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>0,054 -0,06</td>
<td>0,254 0,66</td>
<td>0,382 0,98</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>0,054 -0,06</td>
<td>0,252 0,57</td>
<td>0,365 0,49</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>0,052 -0,43</td>
<td>0,234 -0,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>0,053 -0,25</td>
<td>0,197 -1,74</td>
<td>0,273 -2,15 E</td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>0,053 -0,25</td>
<td>0,240 0,07</td>
<td>0,333 -0,43</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>0,053 -0,25</td>
<td>0,241 0,11</td>
<td>0,361 0,38</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>0,043 -2,09 E</td>
<td>0,190 -2,03 E</td>
<td>0,250 -2,81 E</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>0,077 4,17 FE</td>
<td>0,226 -0,52</td>
<td>0,322 -0,74</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>0,060 1,09</td>
<td>0,214 -1,02</td>
<td>0,330 -0,51</td>
<td></td>
</tr>
<tr>
<td>Aldehyde 2014</td>
<td>Probe 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Formaldehyd Z-Score</th>
<th>Propionaldehyd Z-Score</th>
<th>Butyaldehyd Z-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
<td>0,050</td>
<td>-0,80</td>
<td>0,210</td>
</tr>
<tr>
<td>260</td>
<td>0,045</td>
<td>-1,72</td>
<td>0,059</td>
</tr>
<tr>
<td>262</td>
<td>0,060</td>
<td>1,04</td>
<td>0,250</td>
</tr>
<tr>
<td>264</td>
<td>0,045</td>
<td>-1,63</td>
<td>0,165</td>
</tr>
<tr>
<td>265</td>
<td>0,057</td>
<td>0,49</td>
<td>0,251</td>
</tr>
<tr>
<td>267</td>
<td>< 0,076</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewertung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,054</td>
<td>0,238</td>
<td>0,348</td>
</tr>
<tr>
<td>Vergleich-Stdabwe.</td>
<td>0,005</td>
<td>0,026</td>
<td>0,038</td>
</tr>
<tr>
<td>Rel.Vergleich-Stdabwe.</td>
<td>8,81 %</td>
<td>10,75 %</td>
<td>10,97 %</td>
</tr>
<tr>
<td>Referenzwert</td>
<td>0,052</td>
<td>0,247</td>
<td>0,360</td>
</tr>
<tr>
<td>Soll-Stdabwe.</td>
<td>0,005</td>
<td>0,024</td>
<td>0,035</td>
</tr>
<tr>
<td>Rel.Soll-Stdabwe.</td>
<td>10,00 %</td>
<td>10,00 %</td>
<td>10,00 %</td>
</tr>
<tr>
<td>unt. Toleranzgr.</td>
<td>0,043</td>
<td>0,191</td>
<td>0,278</td>
</tr>
<tr>
<td>ob. Toleranzgr.</td>
<td>0,065</td>
<td>0,286</td>
<td>0,417</td>
</tr>
<tr>
<td>Anzahl B-Ausreißer</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl F-Ausreißer</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl der Labore, die Ergebnisse vorgelegt haben</td>
<td>35</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>Anzahl teilnehmender Labore, nach der Eliminierung der Ausreißer A-D und F (ohne Labore, die keine Messwerte, sondern nur einen Status angegeben haben)</td>
<td>32</td>
<td>33</td>
<td>31</td>
</tr>
</tbody>
</table>

Erläuterung der Ausreißertypen

A: Einzelausreißer, Grubbs
B: abw. Labormittelwert, Grubbs
C: überh. Labor-Stdabwe., Cochran
D: manuell entfernt
Einzeldarstellung Mittelwerte

<table>
<thead>
<tr>
<th>Merkmal:</th>
<th>Formaldehyd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe:</td>
<td>1</td>
</tr>
<tr>
<td>Methode:</td>
<td>ISO 5725-2</td>
</tr>
<tr>
<td>Rel.Soll-STD:</td>
<td>10,00% (Limited)</td>
</tr>
<tr>
<td>Anzahl Labore:</td>
<td>36</td>
</tr>
<tr>
<td>Vgl.-Stdabw.:</td>
<td>0,011 mg/m³</td>
</tr>
<tr>
<td>Rel.Vergleich-STD:</td>
<td>6,78%</td>
</tr>
<tr>
<td>Referenzwert:</td>
<td>0,160 mg/m³</td>
</tr>
<tr>
<td>Toleranzbereich:</td>
<td>0,132 - 0,198 mg/m³ (</td>
</tr>
</tbody>
</table>

Mittelwert: 0,165 mg/m³
Einzeldarstellung Mittelwerte

Merkmal: Acetaldehyd
Probe: 1
Methode: ISO 5725-2
Rel.Soll-STD: 10,00% (Limited)
Anzahl Labore: 36

Mittelwert: 0,487 mg/m³
Vgl.-Stdabw.: 0,035 mg/m³
Rel.Vergleich-STD: 7,09%
Referenzwert: 0,470 mg/m³
Toleranzbereich: 0,389 - 0,584 mg/m³ (|Z-Score| <= 2,00)
Einzeldarstellung Mittelwerte

<table>
<thead>
<tr>
<th>Merkmal:</th>
<th>Propionaldehyd</th>
<th>Mittelwert:</th>
<th>0,502 mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe:</td>
<td>1</td>
<td>Vgl.-Stdabw.:</td>
<td>0,049 mg/m³</td>
</tr>
<tr>
<td>Methode:</td>
<td>ISO 5725-2</td>
<td>Rel.Vergleich-STD:</td>
<td>9,79%</td>
</tr>
<tr>
<td>Rel.Soll-STD:</td>
<td>10,00% (Limited)</td>
<td>Referenzwert:</td>
<td>0,519 mg/m³</td>
</tr>
<tr>
<td>Anzahl Labore:</td>
<td>33</td>
<td>Toleranzbereich:</td>
<td>0,402 - 0,603 mg/m³ (</td>
</tr>
</tbody>
</table>

![Graph showing concentration data with reference and tolerance limits]
Einzeldarstellung Mittelwerte

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Butyraldehyde</th>
<th>Mittelwert:</th>
<th>0,581 mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe:</td>
<td>1</td>
<td>Vgl.-Stdabw.:</td>
<td>0,060 mg/m³</td>
</tr>
<tr>
<td>Methode:</td>
<td>ISO 5725-2</td>
<td>Rel.Vergleich-STD:</td>
<td>10,38%</td>
</tr>
<tr>
<td>Rel.Soll-STD:</td>
<td>10,00% (Limited)</td>
<td>Referenzwert:</td>
<td>0,601 mg/m³</td>
</tr>
<tr>
<td>Anzahl Labore:</td>
<td>31</td>
<td>Toleranzbereich:</td>
<td>0,465 - 0,697 mg/m³ (</td>
</tr>
</tbody>
</table>

![Graph showing measurement data](image-url)
Übersicht Z-Scores

Probe 1

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Formaldehyd</th>
<th>Acetaldehyd</th>
<th>Propionaldehyd</th>
<th>Butyraldehyd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>10</td>
<td>22</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>42</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>58</td>
<td>60</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>121</td>
<td>123</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>156</td>
<td>165</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>174</td>
<td>186</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>195</td>
<td>199</td>
<td>207</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>219</td>
<td>228</td>
<td>230</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>241</td>
<td>260</td>
<td>262</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>265</td>
<td>267</td>
<td>267</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>281</td>
<td></td>
<td></td>
<td>501</td>
</tr>
</tbody>
</table>

Z-Score

-2,79 2,41

-2,15 -2,26

-2,77 -3,00
Einzeldarstellung Mittelwerte

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Formaldehyd</th>
<th>Mittelwert:</th>
<th>0,115 mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe</td>
<td>2</td>
<td>Vgl.-Stdw.:</td>
<td>0,010 mg/m³</td>
</tr>
<tr>
<td>Methode</td>
<td>ISO 5725-2</td>
<td>Rel.Vergleich-STD:</td>
<td>9,07%</td>
</tr>
<tr>
<td>Rel.Soll-STD</td>
<td>10,00% (Limited)</td>
<td>Referenzwert:</td>
<td>0,113 mg/m³</td>
</tr>
<tr>
<td>Anzahl Labore</td>
<td>38</td>
<td>Toleranzbereich:</td>
<td>0,092 - 0,138 mg/m³ (</td>
</tr>
</tbody>
</table>

![Diagram showing distribution of values with reference and tolerance limits.](image-url)
Einzeldarstellung Mittelwerte

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Propionaldehyd</th>
<th>Mittelwert: 1,006 mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe</td>
<td>2</td>
<td>Vgl.-Stdabw.: 0,076 mg/m³</td>
</tr>
<tr>
<td>Methode</td>
<td>ISO 5725-2</td>
<td>Rel.Vergleich-STD: 7,59%</td>
</tr>
<tr>
<td>Rel.Soll-STD</td>
<td>10,00% (Limited)</td>
<td>Referenzwert: 1,040 mg/m³</td>
</tr>
<tr>
<td>Anzahl Labore</td>
<td>34</td>
<td>Toleranzbereich: 0,805 - 1,208 mg/m³ (</td>
</tr>
</tbody>
</table>

![Graph showing data distribution and tolerance limits](image-url)
Einzeldarstellung Mittelwerte

Merkmal: Butyraldehyde
Probe: 2
Methode: ISO 5725-2
Rel. Soll-STD: 10,00% (Limited)
Anzahl Labore: 32

Mittelwert: 0,993 mg/m³
Vgl.-Stdabw.: 0,109 mg/m³
Rel. Vergleich-STD: 10,94%
Referenzwert: 1,050 mg/m³
Toleranzbereich: 0,794 - 1,191 mg/m³ (|Z-Score| ≤ 2,00)

Referenzwert
Mittelwert
Toleranzgrenze
Toleranzgrenze
Übersicht Z-Scores

Probe 2

Merkmal

Formaldehyd Propionaldehyd Butyraldehyd

Z-Score

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Labor

Seite 18
Einzeldarstellung Mittelwerte

Merkmal: Formaldehyd
Probe: 3
Methode: ISO 5725-2
Rel.Soll-STD: 10,00% (Limited)
Anzahl Labore: 32

Mittelwert: 0,054 mg/m³
Vgl.-Stdabw.: 0,005 mg/m³
Rel.Vergleich-STD: 8,81%
Referenzwert: 0,052 mg/m³
Toleranzbereich: 0,043 - 0,065 mg/m³ (|Z-Score| <= 2,00)
Einzeldarstellung Mittelwerte

<table>
<thead>
<tr>
<th>Merkmal:</th>
<th>Propionaldehyd</th>
<th>Mittelwert:</th>
<th>0,238 mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe:</td>
<td>3</td>
<td>Vgl.-Stdabw.:</td>
<td>0,026 mg/m³</td>
</tr>
<tr>
<td>Methode:</td>
<td>ISO 5725-2</td>
<td>Rel.Vergleich-STD:</td>
<td>10,75%</td>
</tr>
<tr>
<td>Rel.Soll-STD:</td>
<td>10,00% (Limited)</td>
<td>Referenzwert:</td>
<td>0,247 mg/m³</td>
</tr>
<tr>
<td>Anzahl Labore:</td>
<td>33</td>
<td>Toleranzbereich:</td>
<td>0,191 - 0,286 mg/m³ (</td>
</tr>
</tbody>
</table>
Einzeldarstellung Mittelwerte

Merkmal: Butyraldehyd
Probe: 3
Methode: ISO 5725-2
Rel.Soll-STD: 10,00% (Limited)
Anzahl Labore: 31

Referenzwert: 0,360 mg/m³
Toleranzbereich: 0,278 - 0,417 mg/m³ (|Z-Score| <= 2,00)

Mittelwert: 0,348 mg/m³
Vgl.-Stdabw.: 0,038 mg/m³
Rel.Vergleich-STD: 10,97%

Referenzwert
Mittelwert
Toleranzgrenze

Seite 21
Übersicht Z-Scores

Probe 3

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Formaldehyd</th>
<th>Propionaldehyd</th>
<th>Butyraldehyd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Z-Score

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Fragen und Antworten

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Probenträger</th>
<th>Analysenmethode</th>
<th>Beginn der Aufarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Sigma-Aldrich</td>
<td>HPLC-DAD</td>
<td>19/09/2014</td>
</tr>
<tr>
<td>22</td>
<td>Sigma-Aldrich</td>
<td>DNPH-HPLC</td>
<td>16.09.2014</td>
</tr>
<tr>
<td>28</td>
<td>Waters Sep-Pak</td>
<td>DNPH-Supelco</td>
<td>22.09.2014</td>
</tr>
<tr>
<td>29</td>
<td>Waters Sep-Pak</td>
<td>angelehnt IFA Arbeitsmappe 6045</td>
<td>24.9.14</td>
</tr>
<tr>
<td>30</td>
<td>Waters</td>
<td>ISO 16000-3</td>
<td>08/10/2014</td>
</tr>
<tr>
<td>42</td>
<td>Waters Sep-Pak</td>
<td>HPLC</td>
<td>09.09.14</td>
</tr>
<tr>
<td>44</td>
<td>Waters Sep-Pak</td>
<td>ISO16000-3</td>
<td>17/09/2014</td>
</tr>
<tr>
<td>50</td>
<td>Waters Sep-Pak</td>
<td>HPLC-photodiode array detector</td>
<td>300 µl of acetonitrile extract diluted with 700 µl water</td>
</tr>
<tr>
<td>58</td>
<td>DNPH-cartridge exposure</td>
<td>HPLC</td>
<td>10/09/2014</td>
</tr>
<tr>
<td>62</td>
<td>Waters Sep-Pak</td>
<td>HPLC-UV analysis</td>
<td>09/09/14</td>
</tr>
<tr>
<td>121</td>
<td>Supelco S10 Cartridge</td>
<td>IFA-Arbeitsmappe Kennzahl 6045</td>
<td>10.09.2014</td>
</tr>
<tr>
<td>123</td>
<td>Waters</td>
<td>NF-ISO 16000-3</td>
<td>22/10/14</td>
</tr>
<tr>
<td>153</td>
<td>Waters Sep-Pak</td>
<td>IFA Folder No. 6045</td>
<td>15.09.2014</td>
</tr>
<tr>
<td>155</td>
<td>Waters DNPH-Sampler WAT 047205</td>
<td>DIN ISO 16000-3 in Anlehnung</td>
<td>18.09.2014</td>
</tr>
<tr>
<td>166</td>
<td>Waters Sep-Pak XPoSure</td>
<td>HPLC</td>
<td>24/09/2014</td>
</tr>
<tr>
<td>174</td>
<td>Sigma Aldrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>Waters Sep-Pack</td>
<td>NF EN ISO 16000-3</td>
<td>2014/09/19</td>
</tr>
<tr>
<td>191</td>
<td>Waters Sep-Pack</td>
<td>ACC-005</td>
<td>12/09/14</td>
</tr>
<tr>
<td>195</td>
<td>acetonitrile</td>
<td>NIOSH 2016</td>
<td>6-10-2014</td>
</tr>
<tr>
<td>207</td>
<td>Supelco DNPH Kartusche 350mg/3mL</td>
<td>HPLC-DAD</td>
<td>15.09.2014</td>
</tr>
<tr>
<td>219</td>
<td>SEP-PAK XPOSURE ALDEHYDE SAMPLER</td>
<td>HPLC</td>
<td>2014-09-10</td>
</tr>
<tr>
<td>228</td>
<td>DNPH</td>
<td>Hausmethode</td>
<td>15.09.14</td>
</tr>
<tr>
<td>231</td>
<td>Waters Sep-Pack</td>
<td>BGIA 6045</td>
<td>11.09.2014</td>
</tr>
<tr>
<td>241</td>
<td>Sigma-Aldrich</td>
<td>LpDNPH S10</td>
<td>15.09.2014</td>
</tr>
<tr>
<td>260</td>
<td>cal : sigma formol-dnph 100µg/ml en formol</td>
<td>NF ISO 16000-4</td>
<td>18/09/2014</td>
</tr>
<tr>
<td>Teilnehmer</td>
<td>Probenträger</td>
<td>Analysenmethode</td>
<td>Beginn der Aufarbeitung</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>262</td>
<td>Sigma-Aldrich</td>
<td>ISO 16000-3</td>
<td>16.10.2014</td>
</tr>
<tr>
<td>264</td>
<td></td>
<td>HPLC UV</td>
<td>17.09.2014</td>
</tr>
<tr>
<td>265</td>
<td>DNPH Kartuschen</td>
<td></td>
<td>29/09/2014</td>
</tr>
<tr>
<td>267</td>
<td>LpDNPH Sigma 210/14</td>
<td>HPLC</td>
<td>29/09/2014</td>
</tr>
<tr>
<td>275</td>
<td>Supelco</td>
<td>EPA TO-11A</td>
<td>2014.09.09</td>
</tr>
<tr>
<td>281</td>
<td></td>
<td>NIOSH 2016</td>
<td>24/09/2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Lagerzeit nach der Probenahme</th>
<th>Datum der Analyse</th>
<th>Desorptionslösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
<td>19/09/2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>22</td>
<td>12 Tage</td>
<td>16.09.2014</td>
<td>70% Acetonitril/30% Milli-Q-Wasser V/V</td>
</tr>
<tr>
<td>28</td>
<td>No</td>
<td>16/09/2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>29</td>
<td>keine</td>
<td>24.9.14</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>30</td>
<td>yes, 1 day in refrigerator</td>
<td>09/010/2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>42</td>
<td>Nein (-18°C)</td>
<td>12.09.14</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>45</td>
<td>No</td>
<td>17/09/2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>55</td>
<td>desorption date: 12/09/14; analysis: 22/09/14; storage in refrigerator</td>
<td>22/09/14</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>56</td>
<td>2h roomtemp</td>
<td>10/09/2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>58</td>
<td>8 september 2014</td>
<td>11 september 2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>60</td>
<td>24h</td>
<td>23/09/2014</td>
<td>ACN</td>
</tr>
<tr>
<td>62</td>
<td>1 day in refrigerator</td>
<td>10/09/14</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>121</td>
<td>6 Tage</td>
<td>10.09.2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>123</td>
<td>no storage</td>
<td>22/10/14</td>
<td>100% CH3CN</td>
</tr>
<tr>
<td>153</td>
<td>2 days</td>
<td>17.09.2014</td>
<td>acetonitril</td>
</tr>
<tr>
<td>155</td>
<td>14 Tage</td>
<td>18.09.2104</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>165</td>
<td>13 Tage</td>
<td>24/09/2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>167</td>
<td>30 min for first sample</td>
<td>24/09/2014</td>
<td>Acetonitril (AcN)</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>No</td>
<td>2014/09/19</td>
<td>ACN</td>
</tr>
<tr>
<td>191</td>
<td>no</td>
<td>12/09/14</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>195</td>
<td>0</td>
<td>6-10-2014</td>
<td>acetonitril</td>
</tr>
<tr>
<td>199</td>
<td>Nein</td>
<td>15.09.2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>207</td>
<td>25 d, -18°C</td>
<td>30.09.2014</td>
<td>ACN H2O 60/40 mmol (NH4)HCO3</td>
</tr>
</tbody>
</table>
Ringversuch Aldehyde 2014

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Lagerzeit nach der Probenahme</th>
<th>Datum der Analyse</th>
<th>Desorptionslösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
<td>1h</td>
<td>2014-09-10</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>228</td>
<td>Gefrierschrank</td>
<td>15.09.14</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>230</td>
<td>Post</td>
<td>11.09.2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>231</td>
<td>6 Tage im Kühlschrank</td>
<td>17.09.2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>241</td>
<td>ca. 7 Tage</td>
<td>17.09.2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>260</td>
<td>non</td>
<td>18/09/2014</td>
<td>acetonitrile 100%</td>
</tr>
<tr>
<td>262</td>
<td>12 Tage</td>
<td>16.09.2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>264</td>
<td>1 month / freezer</td>
<td>16/09/14</td>
<td>Acétonitrile</td>
</tr>
<tr>
<td>265</td>
<td>48h</td>
<td>19.09.2014</td>
<td>ACN</td>
</tr>
<tr>
<td>267</td>
<td>25 Tage</td>
<td>29/09/2014</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>275</td>
<td>No</td>
<td>2014.09.09</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>281</td>
<td>none</td>
<td>24/09/2014</td>
<td>Acetonitrile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Desorptionsvolumen</th>
<th>HPLC-Anlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>Perkin Serie 200</td>
</tr>
<tr>
<td>22</td>
<td>5 ml</td>
<td>Thermo: Pumpe-LPG-3400SD, Autosampler-WP-3000SL, Detektor-UV-VIS DAD-3000</td>
</tr>
<tr>
<td>28</td>
<td>5mL</td>
<td>Agilent 1100 Series</td>
</tr>
<tr>
<td>29</td>
<td>5 ml</td>
<td>Niederdruckpumpe, UVD, Autosampler (Dionex)</td>
</tr>
<tr>
<td>30</td>
<td>5 mL</td>
<td>Waters2695+Waters2995</td>
</tr>
<tr>
<td>42</td>
<td>10 ml</td>
<td>Agilent Typ 1260 Infinity</td>
</tr>
<tr>
<td>45</td>
<td>10ml</td>
<td>HPLC Waters 2695 Alliance / WATERS 2996 Photodiode Array Detector</td>
</tr>
<tr>
<td>55</td>
<td>3 ml</td>
<td>Acquity Waters UPLC system</td>
</tr>
<tr>
<td>56</td>
<td>5 mL</td>
<td>Thermo Ultimate 3000</td>
</tr>
<tr>
<td>58</td>
<td>10 ml</td>
<td>Agilent 1100</td>
</tr>
<tr>
<td>60</td>
<td>3 mL</td>
<td>Agilent 1200 infinity</td>
</tr>
<tr>
<td>62</td>
<td>5 mL</td>
<td>HPLC/UV PerkinElmer Serie 200</td>
</tr>
<tr>
<td>121</td>
<td>5 ml</td>
<td>Agilent 1100</td>
</tr>
<tr>
<td>123</td>
<td>5 ml</td>
<td>HPLC/DAD</td>
</tr>
<tr>
<td>153</td>
<td>10 ml</td>
<td>Dionex</td>
</tr>
<tr>
<td>155</td>
<td>5 ml</td>
<td>Agilent 1200</td>
</tr>
<tr>
<td>165</td>
<td>3 ml</td>
<td>HPLC Agilent Tecnologies 1100</td>
</tr>
<tr>
<td>167</td>
<td>6 mL (filled to 10 mL with distilled water)</td>
<td>Perkin Elmer series 200 LC Pump, / Waters 2487 Dual Absorbance Detector / Waters 717 Autosampler</td>
</tr>
</tbody>
</table>
Ringversuch Aldehyde 2014

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Desorptionsvolumen</th>
<th>HPLC-Anlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>10 mL</td>
<td>HPLC-PAD WATERS</td>
</tr>
<tr>
<td>186</td>
<td>5 ml</td>
<td>Waters Alliance 2690</td>
</tr>
<tr>
<td>191</td>
<td>5</td>
<td>HPLC-DAD</td>
</tr>
<tr>
<td>195</td>
<td>3mL</td>
<td>Agilent 1100</td>
</tr>
<tr>
<td>199</td>
<td>5 ml</td>
<td>1260 infinity LC (Agilent)</td>
</tr>
<tr>
<td>207</td>
<td>10 ml</td>
<td>Agilent</td>
</tr>
<tr>
<td>219</td>
<td>5 mL</td>
<td>Summit</td>
</tr>
<tr>
<td>228</td>
<td>10 ml</td>
<td>Fa. Agilent</td>
</tr>
<tr>
<td>230</td>
<td>10 ml</td>
<td>Dionex Summit</td>
</tr>
<tr>
<td>231</td>
<td>5 ml</td>
<td>Agilent 1100</td>
</tr>
<tr>
<td>260</td>
<td>2 ml</td>
<td>920LC Varian, détecteur UV 350nm</td>
</tr>
<tr>
<td>262</td>
<td>3 ml</td>
<td>Pumpe: Hitachi L2130 Detektor: Jasco DAD MD2010 Plus; Autosampler: AS 3500</td>
</tr>
<tr>
<td>264</td>
<td>5 ml</td>
<td>HPLC UV</td>
</tr>
<tr>
<td>265</td>
<td>2ml</td>
<td>Shimadzu LC 20 AD</td>
</tr>
<tr>
<td>267</td>
<td>5 ml</td>
<td>Agilent 1260, DAD</td>
</tr>
<tr>
<td>275</td>
<td>5ml</td>
<td>Flexar,Perkin elmer (Binary LC Pomp,Detector-Flexar UV/VIS LC,LC autosampler)</td>
</tr>
<tr>
<td>281</td>
<td>10 mL</td>
<td>HPLC Agilent 1100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Trennsäule</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Brownlee Validated C18</td>
</tr>
<tr>
<td>22</td>
<td>Thermo Scientific Acclaim Carbonyl C18, 3 µm 120A 3,0 x 150 mm</td>
</tr>
<tr>
<td>28</td>
<td>Zorbax SB-C18 4,6x250mm 3,5µm</td>
</tr>
<tr>
<td>29</td>
<td>Waters XBridge Phenyl</td>
</tr>
<tr>
<td>30</td>
<td>Allure AK 250x4,6mm 5µm</td>
</tr>
<tr>
<td>42</td>
<td>Prontosil 120-5C 18 ace-EPS</td>
</tr>
<tr>
<td>45</td>
<td>Sunfire C18, 5um, d = 4,6mm, L = 25 cm</td>
</tr>
<tr>
<td>55</td>
<td>Waters AcQuity UPLC BEH Phenyl 1,7µm, 2,1 x 100 mm with AcQuity UPLC pre-column</td>
</tr>
<tr>
<td>56</td>
<td>Acclaim carbonyl RSLC 2,2µm, 2,1*100 mm</td>
</tr>
<tr>
<td>58</td>
<td>Zorbax ODS 4,6 mm id * 25 cm (5um) van Agilent</td>
</tr>
<tr>
<td>60</td>
<td>C18</td>
</tr>
<tr>
<td>62</td>
<td>Supelco Ascentis RP-Amide</td>
</tr>
</tbody>
</table>
Ringversuch Aldehyde 2014

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Trennsäule</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>Prontosil Säule</td>
</tr>
<tr>
<td>123</td>
<td>C8</td>
</tr>
<tr>
<td>153</td>
<td>Zorbax Extend-C18</td>
</tr>
<tr>
<td>155</td>
<td>Agilent Zorbax XDB-C18 4,6mm X 150mm 5µm</td>
</tr>
<tr>
<td>165</td>
<td>LV18</td>
</tr>
<tr>
<td>167</td>
<td>Waters Symmetry C18, 3,5 µm, (4,6 x 100) mm Cartridge + Waters µBondapak C18, 10 µm, (3,9 x 20) mm Guard Column</td>
</tr>
<tr>
<td>174</td>
<td>WATERS NOVAPACK C18 / 150nm3.9mm4µm</td>
</tr>
<tr>
<td>186</td>
<td>Waters Symmetry C18</td>
</tr>
<tr>
<td>191</td>
<td>Ascentis Express C18 (100 mm X 4,6 mm X 3 µm)</td>
</tr>
<tr>
<td>195</td>
<td>C18</td>
</tr>
<tr>
<td>207</td>
<td>Kinetex 2,6µ 100mm (Phenomenex)</td>
</tr>
<tr>
<td>219</td>
<td>Silica C18</td>
</tr>
<tr>
<td>228</td>
<td>Allure-AK</td>
</tr>
<tr>
<td>230</td>
<td>MZ PAH C 18, 5 µm</td>
</tr>
<tr>
<td>231</td>
<td>SEPSERV UltraSep ES PAH, 250 mm³,0 mm ID; Vorsäule, SEPSERV UltraSep ES PAH, 10 mm³,0 mm ID</td>
</tr>
<tr>
<td>241</td>
<td>ULTRASEP ES ALD 125 x 2 mm, 3 µm</td>
</tr>
<tr>
<td>260</td>
<td>EC 250/3 nucéosil 100-5 C18 HD</td>
</tr>
<tr>
<td>262</td>
<td>YMC Pack C4</td>
</tr>
<tr>
<td>264</td>
<td>Acclaim carbonyl</td>
</tr>
<tr>
<td>265</td>
<td>Waters Nova-Pak C18 4µm</td>
</tr>
<tr>
<td>267</td>
<td>Symmetry C18, 250mm x 4,5mm x 5µm (Waters)</td>
</tr>
<tr>
<td>275</td>
<td>Perkin elmer C18 150*4,6mm 5</td>
</tr>
<tr>
<td>281</td>
<td>Grace C18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Laufmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>70/30 (ACN / H2O)</td>
</tr>
<tr>
<td>22</td>
<td>Acetonitril/Wasser (Milli-Q)</td>
</tr>
<tr>
<td>28</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>29</td>
<td>H2O/ACN/THF : ACN</td>
</tr>
<tr>
<td>30</td>
<td>Acetonitril / water</td>
</tr>
<tr>
<td>42</td>
<td>A: 34 Vol.% Acetonitril / 43 Vol.% H2O / 32 Vol.% Methanol; B: Acetonitril (Gradient)</td>
</tr>
</tbody>
</table>
Ringversuch Aldehyde 2014

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Laufmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Acetonitril 60% / Water 40%</td>
</tr>
<tr>
<td>55</td>
<td>gradient elution of 10% THF in water and acetonitril</td>
</tr>
<tr>
<td>56</td>
<td>Water/acetonitrile</td>
</tr>
<tr>
<td>58</td>
<td>acetonitril / H2O</td>
</tr>
<tr>
<td>60</td>
<td>Eau/ACN</td>
</tr>
<tr>
<td>62</td>
<td>Acetonitrile/Water</td>
</tr>
<tr>
<td>121</td>
<td>Wasser/Acetonitril</td>
</tr>
<tr>
<td>123</td>
<td>CH3CNH2O</td>
</tr>
<tr>
<td>155</td>
<td>Acetonitril ACN Wasser H2O Tetrahydrofuran THF</td>
</tr>
<tr>
<td>165</td>
<td>Wasser/Acetonitril 40/60</td>
</tr>
<tr>
<td>167</td>
<td>AcN with 0,1 % Phosphoric Acid and water with 0,1 % Phosphoric Acid</td>
</tr>
<tr>
<td>174</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>water/ACN/THF</td>
</tr>
<tr>
<td>191</td>
<td>H2O, CH3CN, THF</td>
</tr>
<tr>
<td>195</td>
<td>ACN:H2O (30:70)</td>
</tr>
<tr>
<td>199</td>
<td>Wasser/Acetonitril</td>
</tr>
<tr>
<td>207</td>
<td>ACN/THF H2O</td>
</tr>
<tr>
<td>219</td>
<td>Acetonitrile:Water</td>
</tr>
<tr>
<td>228</td>
<td>Acetonitril/Wasser</td>
</tr>
<tr>
<td>230</td>
<td>A= dest. Wasser, B = Acetonitril</td>
</tr>
<tr>
<td>231</td>
<td>Wasser und Acetonitril HPLC Qualität</td>
</tr>
<tr>
<td>241</td>
<td>Acetonitril / Wasser</td>
</tr>
<tr>
<td>260</td>
<td>Acetonitrile 60%- Eau 40%</td>
</tr>
<tr>
<td>262</td>
<td>A: Acetonitril; B: Wasser/THF (90/10 %)</td>
</tr>
<tr>
<td>264</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>H2O/ACN/THF</td>
</tr>
<tr>
<td>267</td>
<td>Acetonitrile/Wasser</td>
</tr>
<tr>
<td>275</td>
<td>acetonitril:water(6:4)</td>
</tr>
<tr>
<td>281</td>
<td>Water/Acetonitrile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Gradient/Temp.-Programm</th>
</tr>
</thead>
</table>

Seite 28
<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Gradient/Temp.-Programm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>Zuerst 12 min isokratisch bei 53% ACN und 47% Wasser, dann in 4,5 min linear auf 100% ACN und danach 3,5 min belassen / T=const=28°C</td>
</tr>
<tr>
<td>28</td>
<td>0 min 60%; 7,5 min 63,8%; 12,5 min 63,8%; 20 min 37,5%; 26 min 67,5%; 30 min 100%; 32 min 100%; 35 min 60% / 35°C</td>
</tr>
<tr>
<td>29</td>
<td>ja</td>
</tr>
<tr>
<td>30</td>
<td>0 min 55/45 18 min 64/36 22 min 70/30 32 min 100/0</td>
</tr>
<tr>
<td>42</td>
<td>0 - 3 min 0 % B</td>
</tr>
<tr>
<td>45</td>
<td>Yes / Oven column Temp : 40°C</td>
</tr>
<tr>
<td>55</td>
<td>40°C</td>
</tr>
<tr>
<td>56</td>
<td>0 min 52% ACN 48% water; 6 min 52% ACN 48% water; 15 min 100% ACN; 17 min 100% ACN</td>
</tr>
<tr>
<td>58</td>
<td>35°C</td>
</tr>
<tr>
<td>60</td>
<td>70/30</td>
</tr>
<tr>
<td>62</td>
<td>40/60 - 2 min ;75/25 - 25 min ; 100/0 - 18 min ; 30°C</td>
</tr>
<tr>
<td>121</td>
<td>-</td>
</tr>
<tr>
<td>123</td>
<td>t=0 min 60/40 (H2O/CH3CN); t=48 min 20/80 (H2O/CH3CN); t=53 min 60/40 (H2O/CH3CN)</td>
</tr>
<tr>
<td>153</td>
<td>Acetonitrile 50 % > 100 %</td>
</tr>
<tr>
<td>155</td>
<td>Gradient Start ACN 30% THF 10% H2O 60% Ende ACN 95% THF 5% H2O 0% 35°C constant</td>
</tr>
<tr>
<td>165</td>
<td>0:00-60;06:00-80;15:00-100;17:00-100;18:00-60;21:00-80;Temp 25°C</td>
</tr>
<tr>
<td>167</td>
<td>Water / AcN 45 / 55 (3 min), up to AcN 100 in 4 min + 1 min. Back to water / AcN 45 / 55 in 1 min + 5 min</td>
</tr>
<tr>
<td>174</td>
<td>-</td>
</tr>
<tr>
<td>186</td>
<td>Mobile phase Gradient - 35°C</td>
</tr>
<tr>
<td>191</td>
<td>-</td>
</tr>
<tr>
<td>195</td>
<td>5 min. isocratic ACN:H2O (30:70), 35 min. gradient ACN:H2O (50:50), 25 min. gradient ACN:H2O (70:30), 5 min. return gradient ACN:H2O (30:70)</td>
</tr>
<tr>
<td>199</td>
<td>Gradient: Wasser/Acetonitril; Temp.: 30°C</td>
</tr>
<tr>
<td>207</td>
<td>-</td>
</tr>
<tr>
<td>219</td>
<td>Yes, 35 C</td>
</tr>
<tr>
<td>228</td>
<td>Beginn: A=55% + B = 45% nach 10 min auf 75% B; 11 min = 100% B bis 15 Min = 45 %B</td>
</tr>
<tr>
<td>231</td>
<td>Temperatur: 40°C; Gradient: 0 min, 60% Wasser + 40% Acetonitril; 14 min, 20% Wasser + 80% Acetonitril; 15 min, 5% Wasser + 95% Acetonitril; 23 min 5% Wasser + 95% Acetonitril; 24 min, 60% Wasser + 40% Acetonitril; 30 min, 60% Wasser + 40% Acetonitril;</td>
</tr>
<tr>
<td>241</td>
<td>ca. 70 / 30 bis 80 / 20</td>
</tr>
<tr>
<td>260</td>
<td>isocratic-ACN 60%, Eau 40%, 33°C , durée analyse 7 min</td>
</tr>
<tr>
<td>262</td>
<td>0-18 min, 35% A, 65% B; 18-20 min, 80% A, 20% B; 20-20,1 min, 100% A, 0%B; 20,1-30 min, 35% A, 65 % B</td>
</tr>
<tr>
<td>264</td>
<td>-</td>
</tr>
</tbody>
</table>
Ringversuch Aldehyde 2014

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Gradient/Temp.-Programm</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td>60/30/10 2min; bis 31 min 40/60/0; bis 34 min 0/100/0; bis 39 min 0/100/0; bis 45 60/30/10; alles bei 40°C</td>
</tr>
<tr>
<td>267</td>
<td>40/60 H2O-Acetonitrile 7 min., 100% Acetonitrile 20min.</td>
</tr>
<tr>
<td>275</td>
<td>Isocratic</td>
</tr>
<tr>
<td>281</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnehmer</th>
<th>Flussrate</th>
<th>Messwellenlänge</th>
<th>Wiederfindungsraten</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>365</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>0,6 ml/min</td>
<td>360 nm</td>
<td>nein</td>
</tr>
<tr>
<td>28</td>
<td>1,000 mL/min</td>
<td>360nm</td>
<td>No</td>
</tr>
<tr>
<td>29</td>
<td>1,5</td>
<td>365nm</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1,2</td>
<td>360</td>
<td>no</td>
</tr>
<tr>
<td>42</td>
<td>1 ml/min</td>
<td>365 nm</td>
<td>nein</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>360 nm</td>
<td>Formaldehyde: quantity 1µg (83.7%-101.3%) and quantity 10µg (94.8%-103.5%)</td>
</tr>
<tr>
<td>55</td>
<td>0,5</td>
<td>360 nm</td>
<td>yes</td>
</tr>
<tr>
<td>56</td>
<td>0,4 mL/min</td>
<td>360 nm</td>
<td>100%</td>
</tr>
<tr>
<td>58</td>
<td>1 ml/min</td>
<td>360 nm</td>
<td>95%</td>
</tr>
<tr>
<td>60</td>
<td>1mL/min</td>
<td>360</td>
<td>No</td>
</tr>
<tr>
<td>62</td>
<td>1 mL/min</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>1,5 ml / min</td>
<td>354 nm</td>
<td>Butylaldehyd 84,5%, alle anderen Aldehyde > 95%</td>
</tr>
<tr>
<td>123</td>
<td>1 ml/min</td>
<td>365,4 nm</td>
<td>no</td>
</tr>
<tr>
<td>153</td>
<td>1,00 ml/min</td>
<td>365/8 nm</td>
<td>97 %</td>
</tr>
<tr>
<td>155</td>
<td>1 ml / min</td>
<td>360nm / 365 nm / 380nm</td>
<td>Kontrolle der vollständigen Desorption erfolgte durch eine weitere Desorption des Adsorbers</td>
</tr>
<tr>
<td>165</td>
<td>1,3 ml/min</td>
<td>360 nm</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>1,5 mL/min</td>
<td>360 nm</td>
<td>100 ± 2 %</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>1,5 mL/min</td>
<td>360</td>
<td>yes</td>
</tr>
<tr>
<td>191</td>
<td>1,2 ml/min</td>
<td>360 nm</td>
<td>-</td>
</tr>
<tr>
<td>195</td>
<td>0,80 mL/min</td>
<td>360 nm</td>
<td>100</td>
</tr>
<tr>
<td>199</td>
<td>0,8mL/min.</td>
<td>370nm</td>
<td>Nein; WF:90-120%</td>
</tr>
<tr>
<td>207</td>
<td>1,5 ml/min</td>
<td>360 nm</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>0,4 ml/min</td>
<td>360 nm</td>
<td>No</td>
</tr>
<tr>
<td>228</td>
<td>1,5 ml</td>
<td>365 nm</td>
<td>95%</td>
</tr>
<tr>
<td>Teilnehmer</td>
<td>Flussrate</td>
<td>Messwellenlänge</td>
<td>Wiederfindungsrate</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>230</td>
<td>0,5 ml/min</td>
<td>DAD = 362 nm, Referenzwellenlänge = 550 nm</td>
<td>nicht bestimmt</td>
</tr>
<tr>
<td>231</td>
<td>0,7 ml/min</td>
<td>365 nm</td>
<td>nein (95-98%)</td>
</tr>
<tr>
<td>241</td>
<td>0,5 ml/min</td>
<td>365 nm</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>0,7 ml/min</td>
<td>350 nm</td>
<td>non</td>
</tr>
<tr>
<td>262</td>
<td>1,5 ml/min</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>0,8 mL/min</td>
<td>365</td>
<td>0,86 acetaldehyde - 0,92 propionaldehyde</td>
</tr>
<tr>
<td>265</td>
<td>1,0 ml/min</td>
<td>356 nm</td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>1,5 ml</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>1,000</td>
<td>360</td>
<td>Yes</td>
</tr>
<tr>
<td>281</td>
<td>1,3 mL/min</td>
<td>360 nm</td>
<td></td>
</tr>
</tbody>
</table>