
Nice, France, 1-3 mars 2006

colloque international - international SYMPoSiuM - internationaleS KolloquiuM

PROGRAMME PROGRAMME PROGRAMMABLAUF

SESSION SESSION THEMENBEREICH

Programming support environments for safety applications
MMI for complex safety-related control systems

T. BOROWSKI, M. HUELKE

BG Institute for occupational safety and health - BGIA,

Alte Heerstrasse 111, D-53754 Sankt Augustin, Germany

The degree of automation or of the “artificial” Intelligence of production plants further increases unmistakably
in favour of increasing productivity. What are and what will be the tasks and concrete working activities of
humans within this production processes? One recognizes a striking scenario by modern control systems
which both for operators and for maintenance personnel and even more important for application
implementer represents a central and elementary interface: the PC with its corresponding software tools for
the respective tasks. This contribution (poster presentation) gives a current insight about what features these
tools have to fulfil or how they should be designed so that all the activities can be executed as fault-freely as
possible in practice. Furthermore existing product standards and known product solutions are presented.

Il est clair que le degré d’automatisation – ou d’intelligence « artificielle » – des installations de production ne
cesse d’augmenter, dans une course à la productivité. Mais qu’advient-il et, surtout, qu’adviendra-t-il de la
place et des tâches de l’opérateur humain dans ces processus de production ? On est frappé par l’exemple
des systèmes de commande actuels, pour lesquels les opérateurs, mais aussi le personnel de maintenance
et, mieux encore, les ingénieurs chargés de la réalisation du système, disposent d’une même interface élé-
mentaire : un PC et des logiciels dédiés aux diverses tâches à accomplir. On indiquera dans cette
présentation par poster ce que ces outils doivent savoir faire et comment ils doivent être conçus pour limiter
dans toute la mesure du possible les risques d’erreur dans l’accomplissement de ces tâches au quotidien.
On présentera en outre diverses normes produits et des exemples de produits connus.

Der Automationsgrad bzw. die “künstliche” Intelligenz von Produktionsanlagen nimmt zu Gunsten steigender
Produktivität unverkennbar immer weiter zu. Was sind und was werden die Aufgaben und konkreten
Tätigkeiten von Menschen in diesen Produktionsprozessen sein? Ein auffälliges Szenario erkennt man an
modernen Steuerungssystemen, die sowohl für die Anlagenbediener als auch für Wartungspersonal und
wichtiger noch für Applikations-Implementierer eine zentrale elementare Schnittstelle vorweisen: den PC mit
entsprechenden Software-Tools für die jeweiligen Aufgaben. Dieser Beitrag (Posterpräsentation) gibt einen
aktuellen Einblick darüber, was diese Tools können müssen bzw. wie sie gestaltet sein sollten, damit die
Tätigkeiten im Praxisalltag möglichst fehlerfrei ausgeführt werden. Weiterhin werden Produktstandards und
Produktlösungen vorgestellt.

Context

Control systems for machine and plant automation continue to grow in performance and complexity.
Microprocessors and software are replacing hard-wired circuit technology. Technological change, in
particular in high-performance components for numerical processing, data communication and data storage,
has also given rise to numerous new products in the area of control systems for safety technology. Complex

Nice, France, 1-3 mars 2006

colloque international - international SYMPoSiuM - internationaleS KolloquiuM

PROGRAMME PROGRAMME PROGRAMMABLAUF

SESSION SESSION THEMENBEREICH

safety control systems are being adopted in increasing numbers in everyday plant operations, in some cases
in combination with safety field bus systems (figure 1).

Figure 1 – Programmable safety logic controllers / field bus systems for machine and plant automation

This development induces change, both in technical performance and in the requisite interaction between
Man and Machine. Man-Machine Interfaces (MMIs) have a particular function in this respect. They are of
interest not only for operational machine control and process visualization, but for activities in the phase of
application implementation: accident analyses reveal in fact particular blackspots in conjunction with deficient
planning, implementation or integration of generic safety functions, especially in interlinked and interacting
machines or plant components. In this context, modern safety controls support effective safety concepts. For
the first time, they permit all-inclusive integration of safety technology and custom adaptation of functional
aspects with a bearing upon safety. "Safety" is becoming more plannable. Nevertheless a further decisive
development is taking place: the machine/plant-related functions are now being implemented in the way of
“free programming” the application software. Programming tools are therefore being employed as MMIs
which are used to perform several safety-related tasks within application development (figure 2) [1].

Figure 2 – Programming support environments – MMI for application software development

A growing number of programmable or at least configurable safety devices fulfil this function. Each device is
associated with a proprietary tool and its own look and feel. This variety is often engineered either by
programmers experienced with standard PLCs, or by electricians familiar with hard-wired safety circuits.
Worse, the machine manufacturers seldom follow established good software engineering practice. In this

Nice, France, 1-3 mars 2006

colloque international - international SYMPoSiuM - internationaleS KolloquiuM

PROGRAMME PROGRAMME PROGRAMMABLAUF

SESSION SESSION THEMENBEREICH

sector, application programming is often completed concurrently to field installation and under intense time
pressure.

Could this scenario lead to an increase in occupational accidents due to systematic errors? Another issue
are systematic software faults leading to failures which are not readily reproducible. Might such faults be the
cause of a large number of unreported cases?

What counter-measures and activities are therefore appropriate? It is a known fact that most errors are
introduced as early as the software specification and design stage, and are typically major conceptual errors.
Conversely, oversights occurring at the coding stage can generally be detected by review or functional
testing. Even application software can readily embody a strategy of fault avoidance in the initial phases of
software development in preference to reliance upon subsequent bug fixing or the application of quality
metrics. Besides the appropriate organisational measures to be implemented by the safety system
integrator, the programming tool should play a major part in providing technical measures for the avoidance
of software faults [2].

Method

For this purpose, safety PLC programming systems are to be provided with properties which satisfy the
target criteria of "simplicity" and "user-friendliness", criteria frequently regarded as being only secondary.
Furthermore, these properties are to be available to all individuals interacting with a control system,
beginning with machine/plant engineering, through programming, commissioning and associated validation
and operation, to maintenance. "Safety" should therefore also be attained by:
- straightforward programming by a reduction in the very awkward functionality of IEC 61131-3 (title:

programmable controllers; programming languages) and the use of standardized and validated software
function modules/libraries for safety functions such as emergency-stop, two-hand control, operating
mode selection, safety door monitoring, motion control functions, etc. (figure 3);

- simple application program generation and fault avoidance through intuitive operation, clear
functionality, transparent project administration, user guidance and input assistance (e.g. wizards,
tooltips, combo boxes, drag & drop technique, cross-reference function, context-sensitive online help,
interactive comprehensible dialogs and plain-text messages) (figure 4), project documentation
assistance;

- active fault detection at the program and variable input stage to ease the work of the programmer (figure
5);

- support for program verification by simulation and debugging facilities, marking of the program flow,
online checklists;

- readily comprehensible but at the same time comprehensive and pinpoint diagnostics with detailed
status information

Nice, France, 1-3 mars 2006

colloque international - international SYMPoSiuM - internationaleS KolloquiuM

PROGRAMME PROGRAMME PROGRAMMABLAUF

SESSION SESSION THEMENBEREICH

 SF_GuardMonitoring

BOOL Activate Ready BOOL
SAFEBOOL S_GuardSwitch1 S_GuardMonitoring SAFEBOOL
SAFEBOOL S_GuardSwitch2 Error BOOL

TIME DiscrepancyTime DiagCode WORD
BOOL StartReset
BOOL AutoReset
BOOL Reset

Figure 3 – Example of safety function block; with (not shown) underlying detailed specifications

Figure 4 – Interactive dialogs simplify “What-to-do” questions

Figure 5 – Automatically detected mismatch between data types

Results

As the enumeration in the previous chapter points out, there is the basic approach of the software
ergonomics and user-friendliness for programming systems. Furthermore it is recognizing the far-reaching
fault detecting measures and particularly the use of standardized safe function blocks which in the best
possible way relieves the programmer at his fault-prone work.
The contribution wouldn't like to do a market overview in this place, the result, however, is confirmed that
some systems were already certified with the performance profile introduced here or are in the process of
the testing and certification. The BGIA participates in charge in the standardization. Worth mentioning is the
new standard (FDIS) ISO 13849-1 (safety related parts of control systems) [4]. It contains requirements for

Error: PLC_PRG(3): incorrect connection BOOL to SAFEBOOL

Nice, France, 1-3 mars 2006

colloque international - international SYMPoSiuM - internationaleS KolloquiuM

PROGRAMME PROGRAMME PROGRAMMABLAUF

SESSION SESSION THEMENBEREICH

safety-related application software which can partially fulfilled by safety-related programming support
environments.
The “standard” for the programming elements arises in the PLCopen [3]. With participation of many
manufacturers and authorities in the relevant working group (TC5) topics like
- definition of language subsets;
- programming guidelines;
- definition of a function block library and
- style guide for safety function blocks
are worked out here.

Bibliography

[1] M. Huelke, Applikationssoftware: mit Sicherheit !, Computer & Automation, February 2005, pp. 30-33

[2] M. Huelke, Software takes the lead in safety applications, 4th International Conference Safety of

Industrial Automated Systems, 26.-28.09.2005, Chicago, Illinois/USA – Proceedings, Ed.: Automation
Technologies Council (ATC), ANN ARBOR, Michigan/USA

[3] PLCopen-TC5, 2005, Safety Functionality – Part 1: Concepts and Function Blocks, Technical

Specification Version 0.99, www.plcopen.org

[4] FDIS ISO 13849-1, Clause 4.6.3, Requirements for application software

	programme:
	session 1:

